Collaborative Research: OAC Core: Topology-Aware Data Compression for Scientific Analysis and Visualization

合作研究:OAC 核心:用于科学分析和可视化的拓扑感知数据压缩

基本信息

  • 批准号:
    2313124
  • 负责人:
  • 金额:
    $ 19.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Today's large-scale simulations are producing vast amounts of data that are revolutionizing scientific thinking and practices. For instance, a fusion simulation can produce 200 petabytes of data in a single run, while a climate simulation can generate 260 terabytes of data every 16 seconds with a 1 square kilometer resolution. As the disparity between data generation rates and available I/O bandwidths continues to grow, data storage and movement are becoming significant bottlenecks for extreme-scale scientific simulations in terms of in situ and post hoc analysis and visualization. The disparity necessitates data compression, which compresses large-scale simulations data in situ, and decompresses data in situ and/or post hoc for analysis and exploration. On the other hand, a critical step in extracting insight from large-scale simulations involves the definition, extraction, and evaluation of features of interest. Topological data analysis has provided powerful tools to capture features from scientific data in turbulent combustion, astronomy, climate science, computational physics and chemistry, and ecology. While lossy compression is leveraged to address the big data challenges, most existing lossy compressors are agnostic of and thus fail to preserve topological features that are essential to scientific discoveries. This project aims to research and develop advanced lossy compression techniques and software that preserve topological features in data for in situ and post hoc analysis and visualization at extreme scales. The success of this project will promote scientific research on driving applications in cosmology, climate, and fusion by enabling efficient and effective compression for scientific data, and the impact scales to other science and engineering disciplines. Furthermore, the research products of this project will be integrated into visualization and parallel processing curricula, disseminated via research and training workshops, and used to attract underrepresented students for broadening participation in computing. This project tackles the data compression, analysis, and visualization needs in extreme-scale scientific simulations by developing a suite of topology-aware data compression algorithms for scalar field and vector field data. Such algorithms effectively reduce the size of data while preserving critical features defined by topological notions. This project will define and enforce topology-aware constraints over advanced lossy compression algorithms. Such capabilities have not been studied systematically within today’s data compression paradigm. This project will impact specific fields, including computational science, data analysis, data compression, and visualization, and the broader scientific community. The research products of this project will be delivered as publicly available software to significantly advance the research cyberinfrastructure for current and upcoming exascale systems. This project will foster novel discoveries in multiple scientific disciplines beyond cosmology, climate, and fusion by enabling efficient and effective compression on a wide range of platforms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当今的大规模模拟正在产生大量数据,这些数据正在彻底改变科学思维和实践,例如,核聚变模拟一次可以产生 200 PB 的数据,而气候模拟每 16 秒可以产生 260 TB 的数据。 1 平方公里的分辨率随着数据生成速率和可用 I/O 带宽之间的差距不断扩大,数据存储和移动正在成为超大规模科学模拟的重大瓶颈。现场和事后分析和可视化的差异需要数据压缩,即在现场压缩大规模模拟数据,并在现场和/或事后解压缩数据以进行分析和探索。从大规模模拟中获取洞察涉及感兴趣特征的定义、提取和评估拓扑数据分析为从湍流燃烧、天文学、气候科学、计算物理和化学等领域的科学数据中捕获特征提供了强大的工具。虽然有损压缩被用来解决大数据挑战,但大多数现有的有损压缩器不知道,因此无法保留对科学发现至关重要的拓扑特征。该项目旨在研究和开发先进的有损压缩技术和软件。保留数据中的拓扑特征,以便在极端尺度下进行原位和事后分析和可视化,该项目的成功将通过对科学数据及其影响进行高效和有效的压缩,促进推动宇宙学、气候和融合应用的科学研究。秤此外,该项目的研究产品将被整合到可视化和并行处理课程中,通过研究和培训研讨会进行传播,并用于吸引代表性不足的学生扩大对计算的参与。通过开发一套针对标量场和矢量场数据的拓扑感知数据压缩算法,这些算法可以有效地减少数据大小,同时保留拓扑概念定义的关键特征。该项目将定义并强制执行对高级有损压缩算法的拓扑感知约束。在当今的数据压缩范例中,此类功能尚未得到系统研究。该项目将影响特定领域,包括计算科学、数据分析、数据压缩和可视化。该项目的研究产品将作为公开软件提供,以显着推进当前和即将到来的亿亿级系统的研究网络基础设施。该项目将通过实现高效的方式,促进宇宙学、气候和核聚变以外的多个科学学科的新发现。和有效的该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bei Phillips其他文献

Bei Phillips的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bei Phillips', 18)}}的其他基金

Collaborative Research: Multiparameter Topological Data Analysis
合作研究:多参数拓扑数据分析
  • 批准号:
    2301361
  • 财政年份:
    2023
  • 资助金额:
    $ 19.82万
  • 项目类别:
    Continuing Grant
Collaborative Research: SCH: Geometry and Topology for Interpretable and Reliable Deep Learning in Medical Imaging
合作研究:SCH:医学成像中可解释且可靠的深度学习的几何和拓扑
  • 批准号:
    2205418
  • 财政年份:
    2022
  • 资助金额:
    $ 19.82万
  • 项目类别:
    Standard Grant
CAREER: A Measure Theoretic Framework for Topology-Based Visualization
职业生涯:基于拓扑的可视化的测量理论框架
  • 批准号:
    2145499
  • 财政年份:
    2022
  • 资助金额:
    $ 19.82万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: Geometry and Topology for Interpretable and Reliable Deep Learning in Medical Imaging
合作研究:SCH:医学成像中可解释且可靠的深度学习的几何和拓扑
  • 批准号:
    2205418
  • 财政年份:
    2022
  • 资助金额:
    $ 19.82万
  • 项目类别:
    Standard Grant
NSF Student Travel Support for the Doctoral Colloquium at 2020 IEEE Visualization Conference (IEEE VIS)
NSF 学生为 2020 年 IEEE 可视化会议 (IEEE VIS) 博士座谈会提供旅行支持
  • 批准号:
    2024149
  • 财政年份:
    2020
  • 资助金额:
    $ 19.82万
  • 项目类别:
    Standard Grant
III: Small: Visualizing Robust Features in Vector and Tensor Fields
III:小:可视化矢量和张量场中的鲁棒特征
  • 批准号:
    1910733
  • 财政年份:
    2019
  • 资助金额:
    $ 19.82万
  • 项目类别:
    Continuing Grant
Collaborative Research: ABI Innovation: A Scalable Framework for Visual Exploration and Hypotheses Extraction of Phenomics Data using Topological Analytics
合作研究:ABI 创新:使用拓扑分析进行表型组数据的可视化探索和假设提取的可扩展框架
  • 批准号:
    1661375
  • 财政年份:
    2017
  • 资助金额:
    $ 19.82万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Topological Data Analysis for Large Network Visualization
III:媒介:协作研究:大型网络可视化的拓扑数据分析
  • 批准号:
    1513616
  • 财政年份:
    2015
  • 资助金额:
    $ 19.82万
  • 项目类别:
    Standard Grant

相似国自然基金

IGF-1R调控HIF-1α促进Th17细胞分化在甲状腺眼病发病中的机制研究
  • 批准号:
    82301258
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CTCFL调控IL-10抑制CD4+CTL旁观者激活促口腔鳞状细胞癌新辅助免疫治疗抵抗机制研究
  • 批准号:
    82373325
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
RNA剪接因子PRPF31突变导致人视网膜色素变性的机制研究
  • 批准号:
    82301216
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
血管内皮细胞通过E2F1/NF-kB/IL-6轴调控巨噬细胞活化在眼眶静脉畸形中的作用及机制研究
  • 批准号:
    82301257
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多元原子间相互作用的铝合金基体团簇调控与强化机制研究
  • 批准号:
    52371115
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
  • 批准号:
    2403088
  • 财政年份:
    2024
  • 资助金额:
    $ 19.82万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
  • 批准号:
    2403090
  • 财政年份:
    2024
  • 资助金额:
    $ 19.82万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403313
  • 财政年份:
    2024
  • 资助金额:
    $ 19.82万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
  • 批准号:
    2414185
  • 财政年份:
    2024
  • 资助金额:
    $ 19.82万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
  • 批准号:
    2402946
  • 财政年份:
    2024
  • 资助金额:
    $ 19.82万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了