Tunable Si-compatible Nonlinear Materials for Active Metaphotonics

用于主动超光子学的可调谐硅兼容非线性材料

基本信息

  • 批准号:
    1709704
  • 负责人:
  • 金额:
    $ 34.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Nontechnical description: This project advances the understanding of materials with largely tunable optical properties and efficient nonlinear behavior, potentially leading to photonic devices with unique nanoscale functionalities. The research team utilizes experimental and computational approaches to help develop novel nonlinear optical materials and structures that enable controllable metallic behavior, for use in next generation power-efficient nanophotonics devices, as well as in advanced optical communications and sensing technologies on silicon chips. The project supports one graduate student and encourages the involvement of undergraduate students in the research through an outreach effort aimed at introducing fundamental concepts of materials science and optical engineering into academic curricula, alongside practical laboratory demonstrations and research activities through summer programs at Boston University. An important component of the outreach plan is to attract underrepresented minorities to a career in materials science and optical engineering through participation in the project. Finally, the outreach involves the development of a focused teaching module, addressing the structural and optical properties of photonic materials. The module is offered yearly to college students as well as practitioners both in industry and academia at the Boston University Photonics Center, and in partnership with the Nanotechnology Innovation Center at Boston University. Technical description: The primary goal of this project is to develop widely tunable, low-loss and silicon-compatible nonlinear plasmonic materials that can be utilized as engineering building blocks for the next generation of metamaterial devices integrated atop Si chips. This is achieved by controlling doping, composition and microstructural properties of transition oxides and oxynitride ceramics deposited by radio frequency magnetron sputtering followed by thermal annealing. The experimental three-year project addresses critical structure-property relationships that enable resonant control of plasmonic near-fields for the future development of Si-compatible tunable metaphotonics. In particular, the research utilizes high-resolution energy filtered Transmission Electron Microscopy, laboratory-based X-ray diffraction, X-ray absorption spectroscopy, optical spectroscopy and electrical characterization in order to elucidate the yet-unknown materials parameters that lead to reduced optical losses, enhanced optical nonlinearity and tunable metallic dispersion across a wide spectral range spanning the visible to the mid-infrared. In so doing, this study fills gaps in foundational materials understanding, allowing the creation of new nanostructures with unique properties and functionalities. The intellectual merit of the proposed research relies on the development of a novel platform for nonlinear optical metamaterials that can solve the long lasting problems of inefficient nonlinear signal generation, lack of tunability, thermal instability and optical losses that limit metal-based nonlinear metamaterial devices. This project enables a substantial broader impact as it provides a foundation for the next generation of highly-integrated, cost-effective active nanoplasmonic on-chip devices that are crucial components in information processing, highly-integrated nonlinear nanophotonics, optical sensing and spectroscopy.
非技术描述:该项目以很大可调的光学特性和有效的非线性行为来推进对材料的理解,这可能导致具有独特纳米级功能的光子设备。研究团队利用实验和计算方法来帮助开发新型的非线性光学材料和结构,以实现可控的金属行为,用于下一代发电效率的纳米光子学设备,以及在硅芯片上的高级光学通信和感应技术中。该项目支持一名研究生,并通过旨在通过波士顿大学的夏季计划通过夏季计划,鼓励本科生参与研究研究。外展计划的重要组成部分是通过参与该项目来吸引材料科学和光学工程学的职业。最后,宣传涉及开发集中的教学模块,以解决光子材料的结构和光学特性。该模块每年向波士顿大学Photonics Center的大学生以及工业和学术界的从业人员提供,并与波士顿大学的纳米技术创新中心合作。技术描述:该项目的主要目标是开发可调,低损坏和硅兼容的非线性等离子材料,这些材料可用作工程构建块,以用于下一代的超材料设备集成在SI芯片上。这是通过控制过渡氧化物和氧化二硝酸盐陶瓷的掺杂,组成和微观结构特性来实现的,该特性通过射频磁铁溅射沉积,然后进行热退火。实验性的三年项目涉及关键的结构特性关系,使等离子近场的共振控制能够为SI兼容的可调型氧气的未来发展。特别是,该研究利用高分辨率滤波的传输电子显微镜,基于实验室的X射线衍射,X射线吸收光谱,光谱和电气表征,以阐明尚未开设的材料参数,从而导致光学损失降低的光学非线性损失,增强的非线性范围跨越跨度的光谱范围。在这样做时,这项研究填补了基础材料理解的空白,从而允许创建具有独特特性和功能的新纳米结构。拟议的研究的智力优点依赖于开发一个新型非线性光学超材料平台,该平台可以解决无效的非线性信号产生,缺乏可调性,热不稳定性和限制基于金属金属基于金属的非线性非线性跨材料设备的长期持久问题。该项目为下一代高度综合,具有成本效益的活性纳米质机上的芯片设备提供了基础,这是基础,这是信息处理中至关重要的组成部分,高度融合的非线性纳米光子学,光学传感和光谱。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Design of infrared microspectrometer based on phase-modulated axilenses
基于相位调制轴透镜的红外显微光谱仪设计
  • DOI:
    10.1364/ao.390610
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Chen, Yuyao;Britton, Wesley A.;Dal Negro, Luca
  • 通讯作者:
    Dal Negro, Luca
Double-plasmon broadband response of engineered titanium silicon oxynitride
工程化钛硅氮氧化物的双等离子体宽带响应
  • DOI:
    10.1364/ome.9.000878
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Britton, W. A.;Chen, Y.;Dal Negro, L.
  • 通讯作者:
    Dal Negro, L.
Indium Tin Oxide Broadband Metasurface Absorber
  • DOI:
    10.1021/acsphotonics.8b00781
  • 发表时间:
    2018-09-01
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Shrestha, Sajan;Wang, Yu;Yu, Nanfang
  • 通讯作者:
    Yu, Nanfang
Phase-modulated axilenses for infrared multiband spectroscopy
用于红外多波段光谱的相位调制轴透镜
  • DOI:
    10.1364/ol.388704
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Chen, Yuyao;Britton, Wesley A.;Dal Negro, Luca
  • 通讯作者:
    Dal Negro, Luca
Indium silicon oxide thin films for infrared metaphotonics
用于红外超光子学的氧化铟硅薄膜
  • DOI:
    10.1063/1.5089499
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Britton, W. A.;Zhang, R.;Shrestha, S.;Chen, Y.;Yu, N.;Dal Negro, L.
  • 通讯作者:
    Dal Negro, L.
共 9 条
  • 1
  • 2
前往

Luca Dal Negro其他文献

金ナノロッド―シリコン量子ドット複合体の発光特性
金纳米棒-硅量子点复合材料的发光性能
  • DOI:
  • 发表时间:
    2016
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    杉本 泰,藤井 稔;Tianhong Chen;Ren Wang;Bjorn M. Reinhard;Luca Dal Negro
    杉本 泰,藤井 稔;Tianhong Chen;Ren Wang;Bjorn M. Reinhard;Luca Dal Negro
  • 通讯作者:
    Luca Dal Negro
    Luca Dal Negro
共 1 条
  • 1
前往

Luca Dal Negro的其他基金

Collaborative Research: Engineering fractional photon transport for random laser devices
合作研究:随机激光设备的分数光子传输工程
  • 批准号:
    2110204
    2110204
  • 财政年份:
    2021
  • 资助金额:
    $ 34.91万
    $ 34.91万
  • 项目类别:
    Standard Grant
    Standard Grant
Compact Phase-Modulated Photonic Structures for On-Chip Multiband Spectroscopy
用于片上多波段光谱的紧凑型相位调制光子结构
  • 批准号:
    2015700
    2015700
  • 财政年份:
    2020
  • 资助金额:
    $ 34.91万
    $ 34.91万
  • 项目类别:
    Standard Grant
    Standard Grant
EAGER: Enhanced Solar Energy Conversion by Ultra-slow Photon Sub-diffusion in Aperiodic Media
EAGER:通过非周期介质中的超慢光子子扩散增强太阳能转换
  • 批准号:
    1643118
    1643118
  • 财政年份:
    2016
  • 资助金额:
    $ 34.91万
    $ 34.91万
  • 项目类别:
    Standard Grant
    Standard Grant
EAGER: Engineering light-matter interaction via topological phase transitions in photonic heterostructures with aperiodic order
EAGER:通过非周期性光子异质结构中的拓扑相变来工程光与物质的相互作用
  • 批准号:
    1541678
    1541678
  • 财政年份:
    2015
  • 资助金额:
    $ 34.91万
    $ 34.91万
  • 项目类别:
    Standard Grant
    Standard Grant
CAREER: Combined Light and Carrier Localization in High-refractive Index Silicon Nanocrystal Structures: a Novel Approach for Si-based Lasers
职业:高折射率硅纳米晶体结构中的组合光和载流子定位:硅基激光器的新方法
  • 批准号:
    0846651
    0846651
  • 财政年份:
    2009
  • 资助金额:
    $ 34.91万
    $ 34.91万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

基于Na3Zr2Si2PO12/聚合物复合固态电解质的钠-氧电池
  • 批准号:
    22379074
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
铸造Al-Si-Mg-(Cu、Zn)合金中第二相的组态演变与强化机理研究
  • 批准号:
    52374386
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于“流血-结痂”愈合机制构筑抗冲击-烧蚀HfCnws@BN增韧Hf-Ta-Si-C涂层研究
  • 批准号:
    52302108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
飞秒激光诱导Si@Au纳米探针用于三阴性乳腺癌PDT/PTT协同治疗研究
  • 批准号:
    32301168
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
海泡石Si-OH介导CTFs界面活性氧物种的调控及去除典型抗生素的研究
  • 批准号:
    42377229
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目

相似海外基金

電圧印加による単結晶SiおよびGeの低温変形メカニズム解明
通过施加电压阐明单晶 Si 和 Ge 的低温变形机制
  • 批准号:
    24K01361
    24K01361
  • 财政年份:
    2024
  • 资助金额:
    $ 34.91万
    $ 34.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)
自律低温プロセスによるSi量子ドットの高収率生成と高品質化の同時実現
通过自主低温工艺同时实现硅量子点的高产率生产和高质量
  • 批准号:
    24K07564
    24K07564
  • 财政年份:
    2024
  • 资助金额:
    $ 34.91万
    $ 34.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Si基板上GaAs系ナノワイヤの大容量分子線エピタキシャル成長と光電変換応用
Si衬底上大容量GaAs纳米线分子束外延生长及光电转换应用
  • 批准号:
    24KJ0323
    24KJ0323
  • 财政年份:
    2024
  • 资助金额:
    $ 34.91万
    $ 34.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
    Grant-in-Aid for JSPS Fellows
微細加工と組成制御によるSiGe/Si面直界面を有する熱電薄膜構造の開発
通过微加工和成分控制开发具有SiGe/Si垂直界面的热电薄膜结构
  • 批准号:
    24K17513
    24K17513
  • 财政年份:
    2024
  • 资助金额:
    $ 34.91万
    $ 34.91万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
    Grant-in-Aid for Early-Career Scientists
Si基板上GaN縦型パワーデバイスの低抵抗および高耐圧化に関する研究
硅衬底低阻高击穿GaN垂直功率器件研究
  • 批准号:
    23K26158
    23K26158
  • 财政年份:
    2024
  • 资助金额:
    $ 34.91万
    $ 34.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)