Compact Phase-Modulated Photonic Structures for On-Chip Multiband Spectroscopy
用于片上多波段光谱的紧凑型相位调制光子结构
基本信息
- 批准号:2015700
- 负责人:
- 金额:$ 38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Due to the rapid developments of highly-integrated photonics and quantum communication technologies as well as the recent advancements of high-resolution medical imaging techniques, there is currently a compelling need for miniaturized and scalable optical elements that enable simultaneous light focusing and directional control over different spectral bands. Responding to these challenges, this project advances the understanding of optical devices that combine multiple functionalities on the nanoscale. The research team utilizes experimental and computational approaches to help develop novel materials and structures that enable controllable light focusing responses with reduced losses and enhanced efficiency for use in next generation of power-efficient nanophotonics devices, such as on-chip spectrometers, optical sensors, and miniaturized imaging systems that operate over multiple and spectral regions. The project supports one graduate student and encourages the involvement of undergraduate students in the research through a vibrant outreach program aimed at introducing fundamental concepts of optical science and engineering in their academic curricula in partnership with practical laboratory demonstrations and research activities through summer programs at Boston University. An important component of this outreach plan is to attract underrepresented minorities to a career in optical engineering through participation in the project. Finally, the outreach involves the development of a focused teaching module addressing the emerging field of Metaphotonics that will be offered to students (graduate and undergraduate) and practitioners both in industry and academia as part of the photonics outreach programs at Boston University.The primary goal of this proposal is to combine favorable aspects from both meta-optics and diffractive optics technologies in order to design, fabricate, and experimentally characterize high-performance, ultra-compact novel diffractive devices with spatially-modulated phase profiles based on high-index transparent materials and scalable multi-level fabrication. In particular, the researchers will focus on two closely related novel photonic structures: (i) single-element, ultra-compact micro- spectrometers based on achromatic axilenses with engineered phase modulation, and (ii) multi-spectral axilens-based focusing devices that achieve simultaneous focusing of radiation over selected spectral bands. The goals will be accomplished by a comprehensive integration of rigorous Rayleigh-Sommerfeld diffraction theory, device-level Finite Element Method (FEM) numerical design, materials fabrication, and experimental characterization of optical devices with integrated imaging and spectroscopic functionalities across a wide spectral range. While using silicon (Si) and titanium dioxide (TiO2) transparent dielectrics for the visible and near-infrared (NIR) spectral range, the research concepts, methods and design approach can naturally be extended to any wavelength of interest and dielectric materials platforms. The intellectual merit of the proposed research program relies on the development of novel and more powerful avenues for cost-effective, miniaturized, phase-engineered devices that are polarization insensitive, work over a large range of incidence angles, and combine highly-efficient focusing and grating responses that, in addition to optical spectroscopy, also find applications to multi- spectral optical detection, quantum information sources, and on-chip sensing. This project enables a substantial broader impact as it provides the foundation for the next generation of ultra-compact spectroscopic phase-modulated devices for optical imaging, sensing, and spectroscopy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于高度集成光子学和量子通信技术的快速发展以及高分辨率医学成像技术的最新进步,目前,人们对微型和可扩展的光学元件有着迫切的需求,从而实现了同时的光聚焦和对不同光谱带的方向控制。为了应对这些挑战,该项目提高了对结合纳米级功能的光学设备的理解。研究小组利用实验和计算方法来帮助开发新颖的材料和结构,以减少损失和提高效率的可控光聚焦响应,并在下一代使用芯片光谱仪,光学传感器,光学传感器以及在多个多重和光谱区域操作的微型成像系统,例如芯片光谱仪,光谱传感器以及小型成像系统。该项目支持一名研究生,并通过一项充满活力的外展计划来鼓励本科生参与研究,该计划旨在通过波士顿大学的暑期课程与实践实验室示范和研究活动合作,在其学术课程中引入基本的光学科学和工程学概念。该外展计划的一个重要组成部分是通过参与该项目来吸引代表性不足的少数群体从事光学工程的职业。最后,宣传涉及开发一个集中的教学模块,该模块应对新兴的高电压领域,该领域将提供给学生(研究生和本科生)和工业和学术界的从业人员,作为波士顿大学的光子外展计划的一部分。表征具有基于高指数透明材料和可扩展的多级制造的空间调制相位剖面的高性能,超紧凑的新型衍射设备。特别是,研究人员将专注于两个密切相关的新型光子结构:(i)基于具有工程相位调制的具有恰当轴突的单元素,超紧凑的微光谱仪,以及(ii)基于多光谱的轴突焦点设备,这些设备可实现同时对辐射频谱的同时焦点。这些目标将通过严格的雷利 - 塞默菲尔德衍射理论,设备级有限元法(FEM)数字设计,材料制造以及具有集成成像和光谱功能的光学设备的实验表征的全面整合来实现。在使用硅(SI)和二氧化钛(TiO2)透明介电介质方面,用于可见和近红外(NIR)光谱范围,研究概念,方法和设计方法自然可以扩展到任何兴趣和介电材料平台的波长。拟议的研究计划的智力优点依赖于新颖,更强大的途径的发展,用于具有两极分化不敏感的成本效率,微型,工程工程的设备,在各种范围内的工作角度进行工作,并结合了高效的焦点和光栅响应和光栅响应,此外,这些响应以及光谱范围的应用程序以及对多种多样的频谱进行了范围的范围。该项目可以产生更大的影响,因为它为下一代超紧凑的光谱相位调制的设备提供了基础,用于光学成像,传感和光谱。该奖项反映了NSF的法定任务,并被认为是通过使用该基金会的智力和更广泛影响的评估来审查CRITERIA的评估来通过评估来获得支持的。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inverse design of ultracompact multi-focal optical devices by diffractive neural networks
基于衍射神经网络的超紧凑多焦点光学器件逆向设计
- DOI:10.1364/ol.460186
- 发表时间:2022
- 期刊:
- 影响因子:3.6
- 作者:Chen, Yuyao;Zhu, Yilin;Britton, Wesley A.;Dal Negro, Luca
- 通讯作者:Dal Negro, Luca
High-throughput speckle spectrometers based on multifractal scattering media
基于多重分形散射介质的高通量散斑光谱仪
- DOI:10.1364/ome.511275
- 发表时间:2024
- 期刊:
- 影响因子:2.8
- 作者:Kumar, Bhupesh;Zhu, Yilin;Dal Negro, Luca;Schulz, Sebastian A.
- 通讯作者:Schulz, Sebastian A.
Design of ultracompact broadband focusing spectrometers based on diffractive optical networks
基于衍射光网络的超紧凑宽带聚焦光谱仪设计
- DOI:10.1364/ol.475375
- 发表时间:2022
- 期刊:
- 影响因子:3.6
- 作者:Zhu, Yilin;Chen, Yuyao;Dal Negro, Luca
- 通讯作者:Dal Negro, Luca
Hyperuniform scalar random fields for lensless, multispectral imaging systems: erratum
无透镜多光谱成像系统的超均匀标量随机场:勘误表
- DOI:10.1364/ol.458682
- 发表时间:2022
- 期刊:
- 影响因子:3.6
- 作者:Chen, Yuyao;Britton, Wesley A.;Dal Negro, Luca
- 通讯作者:Dal Negro, Luca
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luca Dal Negro其他文献
金ナノロッド―シリコン量子ドット複合体の発光特性
金纳米棒-硅量子点复合材料的发光性能
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
杉本 泰,藤井 稔;Tianhong Chen;Ren Wang;Bjorn M. Reinhard;Luca Dal Negro - 通讯作者:
Luca Dal Negro
Luca Dal Negro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luca Dal Negro', 18)}}的其他基金
Collaborative Research: Engineering fractional photon transport for random laser devices
合作研究:随机激光设备的分数光子传输工程
- 批准号:
2110204 - 财政年份:2021
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Tunable Si-compatible Nonlinear Materials for Active Metaphotonics
用于主动超光子学的可调谐硅兼容非线性材料
- 批准号:
1709704 - 财政年份:2017
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
EAGER: Enhanced Solar Energy Conversion by Ultra-slow Photon Sub-diffusion in Aperiodic Media
EAGER:通过非周期介质中的超慢光子子扩散增强太阳能转换
- 批准号:
1643118 - 财政年份:2016
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
EAGER: Engineering light-matter interaction via topological phase transitions in photonic heterostructures with aperiodic order
EAGER:通过非周期性光子异质结构中的拓扑相变来工程光与物质的相互作用
- 批准号:
1541678 - 财政年份:2015
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
CAREER: Combined Light and Carrier Localization in High-refractive Index Silicon Nanocrystal Structures: a Novel Approach for Si-based Lasers
职业:高折射率硅纳米晶体结构中的组合光和载流子定位:硅基激光器的新方法
- 批准号:
0846651 - 财政年份:2009
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
相似国自然基金
高层钢结构建模-优化-深化的跨阶段智能设计方法
- 批准号:52308142
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
游戏化mHealth干预模式下精神障碍出院患者自杀风险管理策略的实施科学研究——基于多阶段优化策略
- 批准号:72374095
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
非洲爪蟾IV型干扰素IFN-upsilon在不同发育阶段的抗病毒功能研究
- 批准号:32303043
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
壳斗科植物传播前阶段种子捕食的地理格局及其驱动机制
- 批准号:32371612
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
计及海量多元逆变资源下垂参数动态优化的配电网多阶段协调运行研究
- 批准号:52307091
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of a prototype clinical theranostic platform combining Magnetic Particle Imaging (MPI) and Magnetic Fluid Hyperthermia (MFH) for the treatment of brain tumors
开发结合磁粒子成像(MPI)和磁流体热疗(MFH)的原型临床治疗平台,用于治疗脑肿瘤
- 批准号:
10761630 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Targeting apoptotic cells to enhance radiotherapy
靶向凋亡细胞以增强放射治疗
- 批准号:
10708827 - 财政年份:2022
- 资助金额:
$ 38万 - 项目类别:
Anti-CD25 Radioimmunotherapy and Total Marrow Irradiation for Treatment of Relapsed and Refractory Acute Leukemia
抗CD25放射免疫治疗和全骨髓照射治疗复发难治性急性白血病
- 批准号:
10435886 - 财政年份:2022
- 资助金额:
$ 38万 - 项目类别:
Targeting apoptotic cells to enhance radiotherapy
靶向凋亡细胞以增强放射治疗
- 批准号:
10538071 - 财政年份:2022
- 资助金额:
$ 38万 - 项目类别:
A Multifaceted Radiomics Model to Predict Cervical Lymph Node Metastasis for Involved Nodal Radiation Therapy
预测涉及淋巴结放射治疗的颈部淋巴结转移的多方面放射组学模型
- 批准号:
10654048 - 财政年份:2022
- 资助金额:
$ 38万 - 项目类别: