CAREER: Manufacturing Tools for the Next Generation of Tissue Engineering, Manufacturing Education for the Next Generation of Engineers

职业:下一代组织工程的制造工具、下一代工程师的制造教育

基本信息

  • 批准号:
    1708819
  • 负责人:
  • 金额:
    $ 46.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2022-04-30
  • 项目状态:
    已结题

项目摘要

It is now conceivable to fabricate engineered tissues inside the human body through a "keyhole" surgery with a robotic, endoscopic 3D printer. This long-term vision has broad implications for healthcare; the way in which surgeons replace diseased and damaged tissue could be forever transformed. This Faculty Early Career Development (CAREER) award supports a study on the dynamics of material delivery in an endoscopic 3D printer, a necessary step to realize this vision. This award also supports an innovative program for high school students to design an assistive device for patients with a specific ambulation disability. An endoscopic 3D printer is composed of a rod-like end-effector (to deliver a fluid-phase material through a "keyhole" surgical site) and a chain of kinematic elements (to position this end-effector). With this form-factor, an endoscopic 3D printer will have dynamic coupling between the positioning and material delivery sub-systems of the end-effector (not observed in a standard 3D printer), and a higher fluidic resistance in the material delivery sub-system than a standard 3D printer. The first research objective is to establish the analytic input-output relationship for the end-effector and compare the output value to a computational model. To achieve this objective, the established Herschel-Bulkley constitutive model for non-Newtonian colloidal fluids will be used to describe the material while geometric constraints and boundary conditions relevant to an endoscopic 3D printer end-effector will be imposed. The output (flowrate) prediction from the input-output relationship will be compared to the predicted output value from a multi-physics computational model. The second objective is to test the hypothesis that the output rise time of a two-degree-of-freedom material delivery actuator (designed to mitigate the higher fluidic resistance) will be significantly lower than the output rise time of a nominal material delivery actuator. This hypothesis will be tested by experiments. The output rise time for the two different material delivery actuators will be measured by machine vision under dynamic flowrate references. The third objective is to establish the input-output relationships of the complete endoscopic 3D printer and compare outputs values to an experiment. To achieve this objective, a quasi-static kinematic model will be used to describe the serial chain of kinematic elements, which will then be coupled with the end-effector input-output relationship established in objectives one and two. Multiple output predictions (six positions and one flowrate) from the input-output relationships will be compared to measured values from experiments performed on a prototype endoscopic 3D printer.
现在,可以通过机器人内窥镜3D打印机的“钥匙孔”手术在人体内部制造工程组织。 这种长期愿景对医疗保健具有广泛的影响。外科医生替代患病和受损的组织的方式可能会永远转化。 这项教师早期职业发展(职业)奖支持了内窥镜3D打印机中材料交付动态的研究,这是实现这一愿景的必要步骤。该奖项还为高中生的创新计划提供了一项创新计划,以设计一种针对特定行动残疾患者的辅助设备。 内窥镜3D打印机由类似杆状的终端效应器(通过“钥匙孔”手术部位传递流体相材料)和运动元件(以定位该最终效应器)组成。 使用此形式因子,内窥镜3D打印机将在最终效应器的定位和材料递送子系统之间具有动态耦合(在标准3D打印机中未观察到),而在材料递送子系统中,与标准3D打印机相比,材料递送的流体阻力更高。 第一个研究目标是建立最终效应器的分析输入输出关系,并将输出值与计算模型进行比较。 为了实现这一目标,将使用已建立的非牛顿胶体流体的Herschel-Bulkley组成模型来描述材料,同时将强加与内窥镜3D打印机端效应器相关的几何约束和边界条件。 从输入输出关系的输出(流量)预测将与多物理计算模型的预测输出值进行比较。 第二个目标是检验假设,即两度自由材料递送执行器的产量上升时间(旨在减轻较高的流体电阻)将显着低于标称材料递送执行器的输出上升时间。 该假设将通过实验检验。在动态流量引用下,将通过机器视觉来衡量两个不同材料传递执行器的输出上升时间。 第三个目标是建立完整的内窥镜3D打印机的输入输出关系,并将输出值与实验进行比较。 为了实现这一目标,准静态运动学模型将用于描述运动元素的串行链,然后将其与目标一和两个目标建立的最终效应器输入 - 输出关系相结合。 将来自输入输出关系的多个输出预测(六个位置和一个流量)与在原型内窥镜3D打印机上执行的实验的测量值进行比较。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Hoelzle其他文献

A large displacement, high frequency, underwater microelectromechanical systems actuator
一种大位移、高频、水下微机电系统执行器
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Hoelzle;Clara K. Chan;Michael B Scott;Melinda A. Lake;A. Rowat
  • 通讯作者:
    A. Rowat
A curved electrode electrostatic actuator designed for large displacement and force in an underwater environment
一种弯曲电极静电致动器,专为水下环境中的大位移和大力而设计
A regulated environment for micro-organs defines essential conditions for intercellular Ca2+ waves
微器官的调节环境定义了细胞间 Ca2 波的必要条件
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Narciso;N. M. Contento;T. J. Storey;David Hoelzle;J. Zartman
  • 通讯作者:
    J. Zartman
Reliability Guidelines and Flowrate Modulation for a Micro Robotic Deposition System
微型机器人沉积系统的可靠性指南和流量调制
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Hoelzle
  • 通讯作者:
    David Hoelzle
Flexible adaptation of iterative learning control with applications to synthetic bone graft manufacturing
迭代学习控制的灵活适应及其在合成骨移植制造中的应用
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Hoelzle
  • 通讯作者:
    David Hoelzle

David Hoelzle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Hoelzle', 18)}}的其他基金

PFI-RP: Materials and surgical characterization for minimally invasive additive manufacturing of synthetic tissues inside the body
PFI-RP:体内合成组织微创增材制造的材料和手术表征
  • 批准号:
    1919204
  • 财政年份:
    2019
  • 资助金额:
    $ 46.39万
  • 项目类别:
    Standard Grant
SNM: Manufacturing Autonomy for Directed Evolution of Materials (MADE-Materials) for Robust, Scalable Nanomanufacturing
SNM:材料定向进化(MADE-Materials)的制造自主权,实现稳健、可扩展的纳米制造
  • 批准号:
    1727894
  • 财政年份:
    2017
  • 资助金额:
    $ 46.39万
  • 项目类别:
    Standard Grant
Collaborative Research: A Novel Control Strategy for 3D Printing of Micro-Scale Devices
协作研究:微型设备 3D 打印的新型控制策略
  • 批准号:
    1737688
  • 财政年份:
    2016
  • 资助金额:
    $ 46.39万
  • 项目类别:
    Standard Grant
CAREER: Manufacturing Tools for the Next Generation of Tissue Engineering, Manufacturing Education for the Next Generation of Engineers
职业:下一代组织工程的制造工具、下一代工程师的制造教育
  • 批准号:
    1552358
  • 财政年份:
    2016
  • 资助金额:
    $ 46.39万
  • 项目类别:
    Standard Grant
Collaborative Research: A Novel Control Strategy for 3D Printing of Micro-Scale Devices
协作研究:微型设备 3D 打印的新型控制策略
  • 批准号:
    1434660
  • 财政年份:
    2014
  • 资助金额:
    $ 46.39万
  • 项目类别:
    Standard Grant

相似国自然基金

新发展格局背景下参与全球价值链对中国制造业空间集聚的影响机制、效应评估及政策研究
  • 批准号:
    42301202
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
数字制造业集聚对供应链中断的缓冲机制研究
  • 批准号:
    72303034
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
政府补贴对制造业绿色创新韧性的影响机理、效果评估与政策优化研究
  • 批准号:
    72304141
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
先进制造业服务化组织障碍成因及调节机制研究
  • 批准号:
    72302069
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
创新链管理视角下高端装备制造业开放创新的风险识别、评估与治理对策研究
  • 批准号:
    72304262
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

OpenBioMAPS: shared tools for accelerating UK bio-manufacturing
OpenBioMAPS:加速英国生物制造的共享工具
  • 批准号:
    BB/Y007808/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.39万
  • 项目类别:
    Research Grant
A software platform enabling rapidly customisable extended reality (XR) training and manufacturing assistance tools
一个支持快速定制扩展现实 (XR) 培训和制造辅助工具的软件平台
  • 批准号:
    10063109
  • 财政年份:
    2023
  • 资助金额:
    $ 46.39万
  • 项目类别:
    Collaborative R&D
Administrative Core
行政核心
  • 批准号:
    10668162
  • 财政年份:
    2023
  • 资助金额:
    $ 46.39万
  • 项目类别:
Dynamic single-cell analysis instrument to evaluate immune cell function
动态单细胞分析仪评估免疫细胞功能
  • 批准号:
    10699036
  • 财政年份:
    2023
  • 资助金额:
    $ 46.39万
  • 项目类别:
A study on the functions and manufacturing technology of stone tools in the latter half of Upper Paleolithic period in Kyushu area
九州地区旧石器时代晚期后半期石器的功能及制造技术研究
  • 批准号:
    23K00919
  • 财政年份:
    2023
  • 资助金额:
    $ 46.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了