WiFiUS: Collaborative Research: Sequential Inference and Learning for Agile Spectrum Use

WiFiUS:协作研究:敏捷频谱使用的顺序推理和学习

基本信息

  • 批准号:
    1660128
  • 负责人:
  • 金额:
    $ 8.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2018-02-28
  • 项目状态:
    已结题

项目摘要

A key imperative to expanding future wireless services is to overcome the spectral crunch. At present, static allocation and rigid regulation lead to under utilization of available spectral resources. Flexible spectrum use aims at exploiting under-utilized spectrum. Available spectrum opportunities may be non-contiguous, scattered over a large bandwidth, and are available locally and for a limited period of time due to the highly dynamic nature of wireless transmissions. This fuels the need to understand how to discover, assess and utilize the time-frequency-location varying spectral resources efficiently and with minimal delay. Moreover, it is critical to access identified idle spectrum in an agile manner.This project will design sequential inference and learning algorithms for agile spectrum access when the state of the spectrum varies rapidly. The key advantage of sequential algorithms, as compared to block-wise algorithms, is that they typically lead to significantly reduced decision delays. The overarching goal of this project is to design sequential inference and learning algorithms for agile spectrum utilization. In particular, this project will employ advanced sequential inference and learning methods for the following three interconnected yet increasingly sophisticated and demanding tasks: 1) to employ sequential reinforcement learning and sequential inference algorithms to design sensing policies for rapid spectrum opportunities discovery; 2) to design sequential algorithms for fast and accurate spectrum quality assessment; and 3) to build, maintain and exploit an interference map of the area where our network operates and represent it as a spatial potential field. The proposed research is expected to make substantial contributions to both applications and theory. On the application level, the proposed research has the potential to substantially improve spectral efficiency by introducing novel tools from sequential analysis, machine learning and statistical inference for the design of spectrum discovery, assessment and exploitation policies. On the theoretical level, the proposed project will advance the state of the art in sequential analysis and contribute new approaches to the general methodological base for optimal stopping, control and machine learning problems. Furthermore, new methods and theory of modeling and exploiting knowledge of interference using spatial potential fields, sequential statistics and advanced propagation modeling will be developed.
扩展未来无线服务的一个关键任务是克服频谱紧缩。目前,静态分配和严格监管导致可用频谱资源利用不足。灵活的频谱使用旨在开发未充分利用的频谱。由于无线传输的高度动态特性,可用频谱机会可能是不连续的、分散在大带宽上,并且在有限的时间内在本地可用。这就迫切需要了解如何有效地、以最小的延迟发现、评估和利用时频位置变化的频谱资源。此外,以敏捷的方式访问已识别的空闲频谱至关重要。该项目将设计顺序推理和学习算法,以便在频谱状态快速变化时实现敏捷频谱访问。与逐块算法相比,顺序算法的主要优点是它们通常会显着减少决策延迟。该项目的总体目标是设计顺序推理和学习算法以实现敏捷的频谱利用。特别是,该项目将采用先进的顺序推理和学习方法来完成以下三个相互关联但日益复杂和要求越来越高的任务:1)采用顺序强化学习和顺序推理算法来设计快速发现频谱机会的感知策略; 2)设计顺序算法以进行快速、准确的频谱质量评估; 3) 构建、维护和利用我们网络运行区域的干扰图,并将其表示为空间势场。拟议的研究预计将对应用和理论做出重大贡献。在应用层面,所提出的研究有可能通过引入序贯分析、机器学习和统计推断的新工具来设计频谱发现、评估和开发政策,从而大幅提高频谱效率。在理论层面上,所提出的项目将推进顺序分析的最先进水平,并为最佳停止、控制和机器学习问题的通用方法论基础贡献新方法。此外,还将开发使用空间势场、序列统计和高级传播建模来建模和利用干扰知识的新方法和理论。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lifeng Lai其他文献

Key Generation using Ternary Tree based Group Key Generation for Data Encryption and Classification
使用基于三叉树的组密钥生成进行数据加密和分类的密钥生成
  • DOI:
    10.5120/ijca2017912883
  • 发表时间:
    2017-02-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nikita Gupta;Amit Saxena;Maithili Narasimha;Randy Katz;Alfin Abraham;Lifeng Lai
  • 通讯作者:
    Lifeng Lai
Action Poisoning Attacks on Linear Contextual Bandits
对线性上下文强盗的行动中毒攻击
  • DOI:
    10.48550/arxiv.2403.04050
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guanlin Liu;Lifeng Lai
  • 通讯作者:
    Lifeng Lai
On The Adversarial Robustness of Principal Component Analysis
论主成分分析的对抗鲁棒性
Fairness-Aware Regression Robust to Adversarial Attacks
公平意识回归对对抗性攻击具有鲁棒性
NEW USES FOR OLD SMARTPHONES
旧智能手机的新用途
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lifeng Lai;Michael Smith;Kewen Gu
  • 通讯作者:
    Kewen Gu

Lifeng Lai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lifeng Lai', 18)}}的其他基金

CIF: Small: Adversarially Robust Reinforcement Learning: Attack, Defense, and Analysis
CIF:小型:对抗性鲁棒强化学习:攻击、防御和分析
  • 批准号:
    2232907
  • 财政年份:
    2023
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Standard Grant
CIF: SMALL: kNN methods for functional estimation and machine learning
CIF:SMALL:用于功能估计和机器学习的 kNN 方法
  • 批准号:
    2112504
  • 财政年份:
    2021
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Standard Grant
CCSS: Collaborative Research: Sketching for High Dimensional Data Analysis in IoT
CCSS:协作研究:物联网高维数据分析草图
  • 批准号:
    2000415
  • 财政年份:
    2020
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Standard Grant
CIF: Small: Adversarially Robust Statistical Inference
CIF:小:对抗性稳健的统计推断
  • 批准号:
    1908258
  • 财政年份:
    2019
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Standard Grant
CAREER: Building Secure Wireless Communication Systems via Physical Layer Resources
职业:通过物理层资源构建安全的无线通信系统
  • 批准号:
    1760889
  • 财政年份:
    2017
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Continuing Grant
CIF: Small: Distributed Statistical Inference with Compressed Data
CIF:小型:使用压缩数据进行分布式统计推断
  • 批准号:
    1717943
  • 财政年份:
    2017
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Standard Grant
CCSS: Quickest Detection Under Energy Constraints
CCSS:能量限制下最快的检测
  • 批准号:
    1711468
  • 财政年份:
    2017
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Standard Grant
CCSS: Collaborative Research: Developing A Physical-Channel Based Lightweight Authentication System for Wireless Body Area Networks
CCSS:协作研究:为无线体域网开发基于物理通道的轻量级身份验证系统
  • 批准号:
    1660140
  • 财政年份:
    2016
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Standard Grant
CIF: Small: Collaborative Research: Secret Key Generation Under Resource Constraints
CIF:小型:协作研究:资源限制下的密钥生成
  • 批准号:
    1665073
  • 财政年份:
    2016
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Standard Grant
CIF: Small: Collaborative Research: Secret Key Generation Under Resource Constraints
CIF:小型:协作研究:资源限制下的密钥生成
  • 批准号:
    1618017
  • 财政年份:
    2016
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Standard Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

WiFiUS: Collaborative Research: Low Overhead Wireless Access Solutions for Massive and Dynamic IoT Connectivity
WiFiUS:协作研究:用于大规模动态物联网连接的低开销无线接入解决方案
  • 批准号:
    1702752
  • 财政年份:
    2017
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Standard Grant
WiFiUS: Collaborative Research: Secure Inference in the Internet of Things
WiFiUS:协作研究:物联网中的安全推理
  • 批准号:
    1702808
  • 财政年份:
    2017
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Standard Grant
WiFiUS: Collaborative Research: Scalable Edge Architecture for Massive Location-Aware Heterogeneous IoT Systems
WiFiUS:协作研究:大规模位置感知异构物联网系统的可扩展边缘架构
  • 批准号:
    1702952
  • 财政年份:
    2017
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Standard Grant
WiFiUS: Collaborative Research: SELIOT: Securing Lifecycle of Internet-of-Things
WiFiUS:协作研究:SELIOT:保护物联网生命周期
  • 批准号:
    1702911
  • 财政年份:
    2017
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Standard Grant
WiFiUS: Collaborative Research: Ultra-low latency and High Reliability for Wireless IoT
WiFiUS:协作研究:无线物联网的超低延迟和高可靠性
  • 批准号:
    1701964
  • 财政年份:
    2017
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了