CIF: Small: Adversarially Robust Reinforcement Learning: Attack, Defense, and Analysis
CIF:小型:对抗性鲁棒强化学习:攻击、防御和分析
基本信息
- 批准号:2232907
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In order to develop trustworthy machine-learning systems, it is essential to understand the potential vulnerabilities of existing learning algorithms and then develop corresponding mitigation strategies. Reinforcement learning (RL), a framework for control-theoretic problems that makes decisions over time within uncertain environments, has many applications in a variety of scenarios, such as recommendation systems, autonomous driving, and finance and business management, to name a few. In modern industry-scale applications of RL models, action decisions, reward- and state-signal collection, and policy iterations are normally implemented in distributed networks. When data packets containing reward signals and action decisions are transmitted through the network, an attacker can intercept and modify these packets to implement adversarial attacks. As RL models are being increasingly deployed in safety-critical and security-related applications, there is a pressing need to understand the effects of potential adversarial attacks on these applications.In this project, the investigator aims to address the following questions: 1) Should decisions made by RL agents be trusted?; 2) Can an adversary mislead RL agents?; and 3) How to design RL algorithms that are robust to adversarial attacks? While many existing works address adversarial attacks on supervised learning models, the understandings of vulnerabilities of RL models and their corresponding mitigation strategies are less complete, partially due to the significant differences between online RL and supervised learning. In particular, compared with the supervised-learning setting, the design and analysis of attack/defense mechanisms for RL models have to handle challenges such as long-term rewards, no access to future data, and unknown dynamics. The goal of this project is to overcome these challenges and make initial attempts to answer the questions raised above. In particular, this project aims to: 1) systematically investigate potential vulnerabilities of RL models and algorithms, 2) develop robust RL algorithms that can mitigate the impacts of adversarial attacks, and 3) analyze the benefit/cost of these mitigation strategies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
为了开发值得信赖的机器学习系统,有必要了解现有学习算法的潜在漏洞,然后制定相应的缓解策略。强化学习 (RL) 是一种控制理论问题的框架,可在不确定的环境中随着时间的推移做出决策,在各种场景中都有许多应用,例如推荐系统、自动驾驶、财务和商业管理等。在现代工业规模的强化学习模型应用中,行动决策、奖励和状态信号收集以及策略迭代通常在分布式网络中实现。当包含奖励信号和行动决策的数据包通过网络传输时,攻击者可以拦截并修改这些数据包以实施对抗性攻击。随着强化学习模型越来越多地部署在安全关键和安全相关的应用程序中,迫切需要了解潜在的对抗性攻击对这些应用程序的影响。在这个项目中,研究人员旨在解决以下问题:1)应该RL 代理做出的决策值得信任吗? 2) 对手能否误导 RL 智能体?; 3)如何设计对对抗性攻击具有鲁棒性的强化学习算法?虽然许多现有的工作解决了监督学习模型的对抗性攻击,但对强化学习模型的漏洞及其相应的缓解策略的理解还不够完整,部分原因是在线强化学习和监督学习之间存在显着差异。特别是,与监督学习环境相比,强化学习模型的攻击/防御机制的设计和分析必须应对诸如长期奖励、无法访问未来数据和未知动态等挑战。该项目的目标是克服这些挑战并初步尝试回答上述问题。具体而言,该项目旨在:1)系统地研究 RL 模型和算法的潜在漏洞,2)开发可以减轻对抗性攻击影响的强大 RL 算法,3)分析这些缓解策略的收益/成本。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lifeng Lai其他文献
Action Poisoning Attacks on Linear Contextual Bandits
对线性上下文强盗的行动中毒攻击
- DOI:
10.48550/arxiv.2403.04050 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Guanlin Liu;Lifeng Lai - 通讯作者:
Lifeng Lai
Key Generation using Ternary Tree based Group Key Generation for Data Encryption and Classification
使用基于三叉树的组密钥生成进行数据加密和分类的密钥生成
- DOI:
10.5120/ijca2017912883 - 发表时间:
2017-02-15 - 期刊:
- 影响因子:0
- 作者:
Nikita Gupta;Amit Saxena;Maithili Narasimha;Randy Katz;Alfin Abraham;Lifeng Lai - 通讯作者:
Lifeng Lai
On The Adversarial Robustness of Principal Component Analysis
论主成分分析的对抗鲁棒性
- DOI:
10.1109/icassp39728.2021.9413607 - 发表时间:
2021-06-06 - 期刊:
- 影响因子:0
- 作者:
Ying Li;Fuwei Li;Lifeng Lai;Jun Wu - 通讯作者:
Jun Wu
Fairness-Aware Regression Robust to Adversarial Attacks
公平意识回归对对抗性攻击具有鲁棒性
- DOI:
10.1109/tsp.2023.3328111 - 发表时间:
2022-11-04 - 期刊:
- 影响因子:5.4
- 作者:
Yulu Jin;Lifeng Lai - 通讯作者:
Lifeng Lai
NEW USES FOR OLD SMARTPHONES
旧智能手机的新用途
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Lifeng Lai;Michael Smith;Kewen Gu - 通讯作者:
Kewen Gu
Lifeng Lai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lifeng Lai', 18)}}的其他基金
CIF: SMALL: kNN methods for functional estimation and machine learning
CIF:SMALL:用于功能估计和机器学习的 kNN 方法
- 批准号:
2112504 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CCSS: Collaborative Research: Sketching for High Dimensional Data Analysis in IoT
CCSS:协作研究:物联网高维数据分析草图
- 批准号:
2000415 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CIF: Small: Adversarially Robust Statistical Inference
CIF:小:对抗性稳健的统计推断
- 批准号:
1908258 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Building Secure Wireless Communication Systems via Physical Layer Resources
职业:通过物理层资源构建安全的无线通信系统
- 批准号:
1760889 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CIF: Small: Distributed Statistical Inference with Compressed Data
CIF:小型:使用压缩数据进行分布式统计推断
- 批准号:
1717943 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CCSS: Quickest Detection Under Energy Constraints
CCSS:能量限制下最快的检测
- 批准号:
1711468 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CCSS: Collaborative Research: Developing A Physical-Channel Based Lightweight Authentication System for Wireless Body Area Networks
CCSS:协作研究:为无线体域网开发基于物理通道的轻量级身份验证系统
- 批准号:
1660140 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
WiFiUS: Collaborative Research: Sequential Inference and Learning for Agile Spectrum Use
WiFiUS:协作研究:敏捷频谱使用的顺序推理和学习
- 批准号:
1660128 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Secret Key Generation Under Resource Constraints
CIF:小型:协作研究:资源限制下的密钥生成
- 批准号:
1665073 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Secret Key Generation Under Resource Constraints
CIF:小型:协作研究:资源限制下的密钥生成
- 批准号:
1618017 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
小分子代谢物Catechin与TRPV1相互作用激活外周感觉神经元介导尿毒症瘙痒的机制研究
- 批准号:82371229
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
DHEA抑制小胶质细胞Fis1乳酸化修饰减轻POCD的机制
- 批准号:82301369
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
异常激活的小胶质细胞通过上调CTSS抑制微血管特异性因子MFSD2A表达促进1型糖尿病视网膜病变的免疫学机制研究
- 批准号:82370827
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SETDB1调控小胶质细胞功能及参与阿尔茨海默病发病机制的研究
- 批准号:82371419
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PTBP1驱动H4K12la/BRD4/HIF1α复合物-PKM2正反馈环路促进非小细胞肺癌糖代谢重编程的机制研究及治疗方案探索
- 批准号:82303616
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Powering Small Craft with a Novel Ammonia Engine
用新型氨发动机为小型船只提供动力
- 批准号:
10099896 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Collaborative R&D
Protection of quantum information in small clusters of qubits
保护小量子位簇中的量子信息
- 批准号:
EP/Z000572/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Designing, simulating, fabricating, and characterising small-pitch LGAD sensors with precise timing
设计、模拟、制造和表征具有精确定时的小间距 LGAD 传感器
- 批准号:
ST/X005194/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Training Grant
Identifying causal pathways in cerebral small vessel disease
确定脑小血管疾病的因果途径
- 批准号:
MR/Y014634/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Optimisation of small molecule inhibitors for effective targeting of phospholipase C gamma in T-cell lymphoma
优化小分子抑制剂以有效靶向 T 细胞淋巴瘤中的磷脂酶 C γ
- 批准号:
MR/Y503344/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant