Neutrino Physics at Syracuse University
雪城大学中微子物理学
基本信息
- 批准号:1707790
- 负责人:
- 金额:$ 85.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-15 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the major intellectual achievements of the 20th century was the development of the Standard Model (SM) of particle physics. This model succeeded in classifying all of the elementary particles known at the time into a hierarchy of groups having similar quantum properties. The validity of this model to date was recently confirmed by the discovery of the Higgs boson at the Large Hadron Collider at CERN. However, the Standard Model as it currently exists leaves open many questions about the universe, including such fundamental questions as to why the Higgs mass has the value it has and why there is no antimatter in the universe. One of the primary areas to search for answers to these and other open questions about the universe, how it came to be and why it is the way it is, is to focus on a study of the properties of neutrinos and to use what we know and can learn about neutrinos as probes of science beyond the Standard Model. Neutrinos are those elementary particles that interact with practically nothing else in the universe. They have no electric charge and were once thought to be massless. Like other elementary particles, they were believed to have an antimatter counterpart, the antineutrino. Moreover, the Standard Model predicted that there were actually three different kinds of neutrinos that were distinguishable through the different interactions that they did undergo whenever there was an interaction. But recent measurements have totally changed our picture of neutrinos. We now know that neutrinos do have a mass and because they do, they can actually change from one type to another. Detailed measurements of these changes, along with other current neutrino experiments, form one of the most promising ways to probe for new physics beyond the Standard Model. Such measurements lie at the heart of this project. There is currently a large interest in experimental particle physics in Liquid Argon Time Projection Chambers (LArTPC) spurred in part by the proposed Long Baseline Neutrino Experiment (LBNE) project at Fermi National Accelerator Laboratory (FNAL) and in neutrino physics in general. This award supports work which refines LArTPC technology, using a test beam and at the MicroBooNE experiment at FNAL. LArTPC detector technology is scalable to the very large masses (perhaps 10 kiloTons) needed by next generation neutrino experiments and is capable of recording three-dimensional digital images of particle trajectories. The MicroBooNE will have an active volume of 80 tons of liquid argon and 8256 wires spread over three instrumented wireplanes making up the Time Projection Chamber. MicroBooNE will make a variety of interesting physics measurements, as well as serving as a proving ground for new hardware techniques relevant for future experiments. Among MicroBooNE's primary physics goals is to provide a cross-check of the "low-energy excess" of electron neutrino events previously identified by the MiniBooNE experiment. There have been recent "hints" that there may be a new type of neutrino, the so-called sterile neutrino. The MicroBoone experiment, with the superior LArTPC, should clarify the situation: either rule out or confirm the sterile neutrino evidence. Another aspect of the work in this award is the development of a large LArTPC detector at CERN called ProtoDUNE. This award will provide one post-doctoral fellow to work on the installation and commissioning of the Proto-DUNE detector. The lessons learned here will inform the future DUNE detector design.The broader impact of this work will involve graduate students and undergraduates supported by this project receiving first-hand experience with High Energy Physics detector development, while also having access to MicroBooNE data that the graduate students will use for their dissertation analyses. The Syracuse group will continue with several outreach efforts as part of this proposal. The group maintains an outreach webpage that includes an "Ask-a-A-Physicist" questionnaire form as well as an active QuarkNet program.
20世纪的主要知识成就之一是粒子物理学标准模型(SM)的发展。该模型成功地将当时已知的所有基本粒子分类为具有相似量子特性的组的层次结构。迄今为止,该模型的有效性最近通过在CERN的大型强子对撞机上发现了Higgs玻色子。但是,目前存在的标准模型为宇宙留下了许多问题,包括有关希格斯质量为何具有其价值以及为什么宇宙中没有反物质的基本问题。寻找有关宇宙和其他开放问题的答案的主要领域之一,它是如何发生的,以及为什么它的样子,是专注于对中微子的性质的研究,并使用我们知道的知识并可以学习中微子作为标准模型以外的科学探索。中微子是那些与宇宙中实际上没有其他相互作用的基本粒子。他们没有电荷,曾经被认为是无质量的。像其他基本颗粒一样,它们被认为具有反物质对应物,抗肿瘤。此外,标准模型预测,实际上有三种不同类型的中微子可以通过它们在相互作用时进行的不同相互作用来区分。但是最近的测量已完全改变了我们对中微子的情况。我们现在知道中微子确实有质量,并且因为它们确实可以从一种类型变为另一种类型。这些变化的详细测量以及其他当前的中微子实验构成了探究标准模型以外的新物理学的最有希望的方法之一。这样的测量是该项目的核心。目前,在Fermi National National Accelerator Laboratory(FNAL)和Neutrino Physics的拟议长基线中微子实验(LBNE)项目中,一部分提议的长基线中微子实验(LBNE)项目刺激了液体氩时间投射室(LARTPC)的实验颗粒物理物理学的浓厚兴趣。该奖项支持使用测试梁和FNAL的微型酮实验来完善LARTPC技术的工作。 LARTPC检测器技术可扩展到下一代中微子实验所需的非常大的质量(也许是10千吨),并且能够记录粒子轨迹的三维数字图像。微酮的活性体积为80吨液体氩气,8256条电线分布在三个构成时间投影室的仪器上。 Microboone将进行各种有趣的物理测量,并成为与未来实验相关的新硬件技术的探索基础。微酮的主要物理目标之一是对MiniBoone实验先前确定的电子中微子事件的“低能过量”进行交叉检查。最近有“提示”可能有一种新型的中微子,即所谓的无菌中微子。具有上级LARTPC的微酮实验应阐明情况:排除或确认无菌中微子证据。该奖项中该作品的另一个方面是开发了Cern的大型LARTPC检测器,称为Protodune。该奖项将为一名博士后研究员,以进行原始探测器的安装和调试。这里学到的经验教训将为未来的沙丘探测器设计提供信息。这项工作的更广泛影响将涉及该项目的研究生和本科生,并获得了高能量物理探测器开发的第一手经验,同时还可以访问研究生数据,而研究生将使用这些数据来进行论文分析。作为该提案的一部分,锡拉丘兹集团将继续进行几项外展工作。该小组保留了一个外展网页,其中包括“ ask-a-a-a-physicist”问卷表格以及活动的Quarknet程序。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Construction of precision wire readout planes for the Short-Baseline Near Detector (SBND)
- DOI:10.1088/1748-0221/15/06/p06033
- 发表时间:2020-06-01
- 期刊:
- 影响因子:1.3
- 作者:Acciarri, R.;Adams, C.;Zhao, M.
- 通讯作者:Zhao, M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mitchell Soderberg其他文献
Mitchell Soderberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mitchell Soderberg', 18)}}的其他基金
Neutrino Research at Syracuse University
雪城大学的中微子研究
- 批准号:
2209488 - 财政年份:2022
- 资助金额:
$ 85.8万 - 项目类别:
Continuing Grant
Neutrino Physics at Syracuse University
雪城大学中微子物理学
- 批准号:
2012983 - 财政年份:2020
- 资助金额:
$ 85.8万 - 项目类别:
Standard Grant
MRI Consortium: Development of a Time Projection Chamber to Measure Neutrino Interactions in the LAr1 Near Detector
MRI 联盟:开发时间投影室来测量 LAr1 近探测器中的中微子相互作用
- 批准号:
1428753 - 财政年份:2014
- 资助金额:
$ 85.8万 - 项目类别:
Standard Grant
Neutrino Physics with Liquid Argon Detectors: Entering the MicroBooNE Era
液氩探测器的中微子物理:进入 MicroBooNE 时代
- 批准号:
1403280 - 财政年份:2014
- 资助金额:
$ 85.8万 - 项目类别:
Continuing Grant
Neutrino Physics with Liquid Argon Detectors
中微子物理与液氩探测器
- 批准号:
1068553 - 财政年份:2011
- 资助金额:
$ 85.8万 - 项目类别:
Continuing Grant
相似国自然基金
新型血管微创介入智能碎溶栓系统设计与多物理效应下碎溶栓机理研究
- 批准号:82302400
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
联合连续弛豫时间分布与物理阻抗模型的锂离子电池极化特性演变分析方法
- 批准号:22309205
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于热电力协同调控的食管穿越式适形热物理治疗理论与方法研究
- 批准号:52306105
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于物理启发领域泛化的跨装置等离子体破裂预测方法研究
- 批准号:12375219
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
氧化/还原助剂修饰CdS用于光催化分解H2S制氢的超快光物理机理研究
- 批准号:22311530118
- 批准年份:2023
- 资助金额:37 万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
- 批准号:
2338819 - 财政年份:2024
- 资助金额:
$ 85.8万 - 项目类别:
Continuing Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 85.8万 - 项目类别:
Standard Grant
REU Site: Accelerator and Nuclear Physics
REU 站点:加速器和核物理
- 批准号:
2348822 - 财政年份:2024
- 资助金额:
$ 85.8万 - 项目类别:
Standard Grant
REU Site: REU in Theoretical and Experimental Physics
REU 网站:REU 理论与实验物理
- 批准号:
2348872 - 财政年份:2024
- 资助金额:
$ 85.8万 - 项目类别:
Continuing Grant
REU Site: Summer Research Program for Community College and Liberal Arts College Students in Physics and Astronomy
REU 网站:社区学院和文理学院学生物理和天文学夏季研究计划
- 批准号:
2349111 - 财政年份:2024
- 资助金额:
$ 85.8万 - 项目类别:
Continuing Grant