NSF-BSF: Many-Body Physics of Quantum Computation

NSF-BSF:量子计算的多体物理学

基本信息

  • 批准号:
    2338819
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-02-01 至 2027-01-31
  • 项目状态:
    未结题

项目摘要

NONTECHNICAL SUMMARYThis award supports research, education, and outreach activities with a goal to develop theoretical underpinnings and specific quantum algorithms, which may be implemented on the modern-day quantum computation platforms. The last decade witnessed a tremendous progress in the development and manufacturing of prototypical quantum computers. Though still noisy and subject to errors and decoherence, they are already capable of performing non-trivial tasks. This brought a quest for meaningful computational problems, which may be tackled with the help of available quantum architecture. One such problem is optimization, that is finding an outcome (i.e. a sequence of bits), which optimizes a certain intricate set of criteria (known as a cost function). From the physics perspective, this is a problem of finding low energy states (i.e. cooling) of a disordered media (aka glass). The project will implement such glassy landscapes with available qubit platforms and develop cooling protocols utilizing the quantum dynamics of their constituent elements. It was realized that the ideal quantumness greatly facilitates cooling. The project will investigate the effectiveness of real-life noisy-dissipative qubit arrays to accomplish these tasks. It will develop specific algorithms, implement them on commercially available devices (utilizing the NSF Cloud Bank funding mechanism) and compare their performance with theoretical expectations. The award also facilitates the PI's educational and outreach activities which contribute to the development of the US STEM workforce through development of quantum computation curriculum, preparing review articles, organization of workshops, and summer schools. TECHNICAL SUMMARYThis award supports research, education, and outreach activities with a goal to develop a theory and protocols for specific quantum algorithms, which may be implemented on commercial platforms, available through the NSF Cloud Bank. On the theory part, the qubit arrays represent examples of open dissipative quantum systems, which are driven by time-dependent local fields and couplings. Such a driven-dissipative environment can be modeled by the Lindbladian. The project will extend theoretical tools of non-equilibrium quantum field theory, to incorporate Lindbladian dynamics. One of the goals of this construction is to elucidate the existence and properties of the many-body localization transition in the Hilbert space of the array. Understanding of such transitions is crucial to developing protocols for the effective quantum cooling (i.e. approximate quantum optimization). Specifically, cooling of the glassy many-body localized phase may be achieved through periodic quantum melting through the first order transition and refreezing through the second order transition. The project will develop a theory of such dissipative cooling cycles and implement them on the D-Wave 5000-qubit platform. It will also develop tools for analyzing the resulting “experimental” data sets. The award also facilitates the PI's educational and outreach activities which contribute to the development of the US STEM workforce through development of quantum computation curriculum, preparing review articles, organization of workshops, and summer schools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要该奖项支持研究、教育和推广活动,旨在开发理论基础和特定的量子算法,这些算法可以在现代量子计算平台上实现。过去十年前,原型的开发和制造取得了巨大进步。量子计算机虽然仍然存在噪声并且容易出现错误和退相干,但它们已经能够执行重要的任务,这带来了对有意义的计算问题的追求,这些问题可以在可用的量子架构的帮助下得到解决。其中一个问题是优化,即找到一个结果(即一系列位),它优化一组复杂的标准(称为成本函数)从物理学的角度来看,这是一个低能态问题(该项目将利用可用的量子位平台实现这种玻璃景观,并利用其组成元素的量子动力学开发冷却协议。人们意识到,理想的量子性极大地促进了冷却的有效性。它将开发特定的算法,在商用设备上实施它们(利用 NSF 云银行资助机制),并将其性能与理论预期进行比较。该奖项还促进了 PI 的教育。通过开发量子计算课程、准备评论文章、组织研讨会和暑期学校,促进美国 STEM 劳动力发展的外展活动 技术摘要 该奖项支持以下方面的研究、教育和外展活动。目标是开发特定量子算法的理论和协议,这些算法可以在 NSF 云银行提供的商业平台上实现。在理论部分,量子位阵列代表了由时间驱动的开放耗散量子系统的示例。这种驱动耗散环境可以通过 Lindbladian 进行建模,该项目将扩展非平衡量子场论的理论工具,以纳入 Lindbladian 动力学。阐明阵列希尔伯特空间中多体局域化转变的存在和性质对于开发有效量子冷却(即近似量子优化)的协议至关重要。局域相可以通过一阶跃迁的周期性量子熔化和二阶跃迁的重新冻结来实现。该项目将开发这种耗散冷却循环的理论,并在 D-Wave 5000 量子位上实现它们。它还将开发用于分析由此产生的“实验”数据集的工具。该奖项还将促进 PI 的教育和推广活动,通过开发量子计算课程、准备评论文章和组织研究,为美国 STEM 劳动力的发展做出贡献。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alex Kamenev其他文献

Coulomb blockade with neutral modes.
具有中性模式的库仑封锁
  • DOI:
    10.1103/physrevlett.114.156401
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Alex Kamenev;Yuval Gefen
  • 通讯作者:
    Yuval Gefen
Qubit decoherence and symmetry restoration through real-time instantons
通过实时瞬子实现量子位退相干和对称性恢复
  • DOI:
    10.1103/physrevresearch.4.023020
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Foster Thompson;Alex Kamenev
  • 通讯作者:
    Alex Kamenev
How pure can we go with adiabatic state manipulation?
我们的绝热状态操纵能达到多纯粹?
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Raul A. Santos;Alex Kamenev;Y. Gefen
  • 通讯作者:
    Y. Gefen

Alex Kamenev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alex Kamenev', 18)}}的其他基金

REU Site: Physics and Astronomy at the University of Minnesota
REU 站点:明尼苏达大学物理与天文学
  • 批准号:
    2348668
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
REU Site: Physics and Astronomy at the University of Minnesota
REU 站点:明尼苏达大学物理与天文学
  • 批准号:
    2049645
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
EAGER-QAC-QCH: NSF-BSF: Quantum Computation as a Non-Equilibrium Dynamical Many-Body System
EAGER-QAC-QCH:NSF-BSF:量子计算作为非平衡动态多体系统
  • 批准号:
    2037654
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
REU/RET Site: Physics and Astronomy at the University of Minnesota
REU/RET 站点:明尼苏达大学物理与天文学
  • 批准号:
    1757388
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Kinetics and Entanglement in Quantum Devices
量子器件中的动力学和纠缠
  • 批准号:
    1608238
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
REU/RET Site: Physics and Astronomy at the University of Minnesota: Renewal
REU/RET 网站:明尼苏达大学物理和天文学:续订
  • 批准号:
    1460141
  • 财政年份:
    2015
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
KINETICS OF FLUCTUATIONS IN NANO-DEVICES
纳米器件波动动力学
  • 批准号:
    1306734
  • 财政年份:
    2013
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
REU/RET Site: Physics and Astronomy at the University of Minnesota
REU/RET 站点:明尼苏达大学物理与天文学
  • 批准号:
    1156388
  • 财政年份:
    2012
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Nonequilibrium Superconductivity in Disordered, Granular and Hybrid Systems
无序、粒状和混合系统中的非平衡超导性
  • 批准号:
    0804266
  • 财政年份:
    2008
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Non--Perturbative Interaction Effects in Disordered and Granular Metals
无序金属和颗粒金属中的非微扰相互作用效应
  • 批准号:
    0405212
  • 财政年份:
    2004
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant

相似国自然基金

枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
  • 批准号:
    31871988
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
  • 批准号:
    61774171
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
  • 批准号:
    38870708
  • 批准年份:
    1988
  • 资助金额:
    3.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333889
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333888
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321481
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321480
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了