CAREER: Novel Approaches for Mining Large and Complex Networks

职业:挖掘大型复杂网络的新方法

基本信息

  • 批准号:
    1707548
  • 负责人:
  • 金额:
    $ 49.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-15 至 2023-01-31
  • 项目状态:
    已结题

项目摘要

This CAREER project includes an integrated research, education, and outreach program that focusses on the development of novel methods for mining large, complex networks. Networks (graphs) are ubiquitous in real-world applications. Although successful, the methodology development for network analytics is still in its early stage. This project addresses fundamental questions essential to the advancement of large and complex network analytics. These challenges are driven by real-world applications in social, biological, and medical domains. The research plan is complemented by a comprehensive education and outreach plan focussed on three elements: (1) the development of new interdisciplinary courses; (2) direct undergraduate involvement in the research projects; and (3) outreach activities including the STEM program targeting K-12 schools. Underrepresented students will be encouraged to participate in this project. The research goal of the project is to significantly extend the reliability and efficiency of large network analysis. The project has three research aims. (1) Develop novel memory-based random walk proximity measures that can effectively capture the similarity between nodes. Proximity measure is of fundamental importance for many advanced network analysis tasks. A rigorous theoretical foundation will be provided for the developed measures. (2) Study the dual-network model and its applications. The dual-network model has a wide range real-world applications. The specific problem of cross-network node set query will be investigated in the project. Both numerical and algorithmic approaches will be explored. (3) Design robust and flexible multi-network algorithms for clustering and ranking. The focus will be on a novel multi-network model, a network of networks, which allows us to integrate domain similarities to improve the performance of the algorithms.
该职业项目包括一个综合研究、教育和推广计划,重点是开发挖掘大型复杂网络的新方法。 网络(图)在现实世界的应用中无处不在。尽管取得了成功,但网络分析方法的开发仍处于早期阶段。该项目解决了推进大型复杂网络分析所必需的基本问题。这些挑战是由社会、生物和医学领域的现实应用驱动的。该研究计划辅之以全面的教育和推广计划,重点关注三个要素:(1)开发新的跨学科课程; (2)本科生直接参与研究项目; (3) 外展活动,包括针对 K-12 学校的 STEM 计划。将鼓励代表性不足的学生参与该项目。该项目的研究目标是显着扩展大型网络分析的可靠性和效率。该项目有三个研究目标。 (1)开发新颖的基于内存的随机游走邻近度量,可以有效捕获节点之间的相似性。邻近度测量对于许多高级网络分析任务至关重要。将为制定的措施提供严格的理论基础。 (2)研究双网模型及其应用。双网络模型在现实世界中具有广泛的应用。项目中将研究跨网络节点集查询的具体问题。将探索数值和算法方法。 (3) 设计稳健且灵活的多网络聚类和排序算法。重点将放在一种新颖的多网络模型上,即网络的网络,它使我们能够集成领域相似性以提高算法的性能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiang Zhang其他文献

Assessment of dynamic mode-I delamination driving force in double cantilever beam tests for fiber-reinforced polymer composite and adhesive materials
纤维增强聚合物复合材料和粘合材料双悬臂梁试验中动态 I 型分层驱动力的评估
  • DOI:
    10.1016/j.compscitech.2022.109632
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    9.1
  • 作者:
    Tianyu Chen;Yiding Liu;C. Harvey;Kun Zhang;Simon Wang;V. Silberschmidt;B. Wei;Xiang Zhang
  • 通讯作者:
    Xiang Zhang
Comparison of Spectral Similarity Measures for Compound Identification
化合物鉴定的光谱相似性测量方法的比较
Coherent Optical Frequency Dissemination with Passive Phase Noise Cancellation
具有无源相位噪声消除的相干光频率传播
Te-Te Bonding in Copper Tellurides
碲化铜中的 Te-Te 键合
  • DOI:
    10.1021/ja00095a036
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Seeyearl Seong;T. A. Albright;Xiang Zhang;M. Kanatzidis
  • 通讯作者:
    M. Kanatzidis
Cytotoxicity of Boron-Doped Nanocrystalline Diamond Films Prepared by Microwave Plasma Chemical Vapor Deposition
微波等离子体化学气相沉积法制备掺硼纳米晶金刚石薄膜的细胞毒性
  • DOI:
    10.1088/1009-0630/17/7/08
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Dan Liu;L. Gou;J. Ran;Hong Zhu;Xiang Zhang
  • 通讯作者:
    Xiang Zhang

Xiang Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiang Zhang', 18)}}的其他基金

CAREER: Multiscale Reduced Order Modeling and Design to Elucidate the Microstructure-Property-Performance Relationship of Hybrid Composite Materials
职业:通过多尺度降阶建模和设计来阐明混合复合材料的微观结构-性能-性能关系
  • 批准号:
    2341000
  • 财政年份:
    2024
  • 资助金额:
    $ 49.92万
  • 项目类别:
    Standard Grant
CRII:SCH:Self-Supervised Contrastive Representation Learning for Medical Time Series
CRII:SCH:医学时间序列的自监督对比表示学习
  • 批准号:
    2245894
  • 财政年份:
    2023
  • 资助金额:
    $ 49.92万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Multiscale Reduced-Order Modeling and Experimental Framework for Lithium-ion Batteries under Mechanical Abuse Conditions
协作研究:机械滥用条件下锂离子电池的集成多尺度降阶建模和实验框架
  • 批准号:
    2114822
  • 财政年份:
    2021
  • 资助金额:
    $ 49.92万
  • 项目类别:
    Standard Grant
EAGER: Advancing High-Efficiency Nanoscale Antiferromagnetic Spintronics with Two-Dimensional Half Metals
EAGER:利用二维半金属推进高效纳米级反铁磁自旋电子学
  • 批准号:
    1753380
  • 财政年份:
    2017
  • 资助金额:
    $ 49.92万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Low-Vibration, Cryogen-Free Cryostat Microscope System
MRI:获取低振动、无冷冻剂的低温恒温器显微镜系统
  • 批准号:
    1725335
  • 财政年份:
    2017
  • 资助金额:
    $ 49.92万
  • 项目类别:
    Standard Grant
CAREER: Novel Approaches for Mining Large and Complex Networks
职业:挖掘大型复杂网络的新方法
  • 批准号:
    1552915
  • 财政年份:
    2016
  • 资助金额:
    $ 49.92万
  • 项目类别:
    Continuing Grant
III: Medium: Collaborative Research: Toward Robust and Scalable Discovering of Significant Associations in Massive Genetic Data
III:媒介:合作研究:在海量遗传数据中稳健且可扩展地发现显着关联
  • 批准号:
    1664629
  • 财政年份:
    2016
  • 资助金额:
    $ 49.92万
  • 项目类别:
    Standard Grant
INSPIRE Track 1: Exploring New Route of Optically Mediated Self-Assembly: Final Material Properties Determine Its Structures
INSPIRE 轨道 1:探索光介导自组装的新途径:最终材料特性决定其结构
  • 批准号:
    1344290
  • 财政年份:
    2013
  • 资助金额:
    $ 49.92万
  • 项目类别:
    Continuing Grant
Materials World Network: Classical and Quantum Optical Metamaterials by Combining Top-down and Bottom-up Fabrication Techniques
材料世界网络:结合自上而下和自下而上制造技术的经典和量子光学超材料
  • 批准号:
    1210170
  • 财政年份:
    2012
  • 资助金额:
    $ 49.92万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Toward Robust and Scalable Discovering of Significant Associations in Massive Genetic Data
III:媒介:合作研究:在海量遗传数据中稳健且可扩展地发现显着关联
  • 批准号:
    1162374
  • 财政年份:
    2012
  • 资助金额:
    $ 49.92万
  • 项目类别:
    Standard Grant

相似国自然基金

海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
  • 批准号:
    82304658
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
  • 批准号:
    82070530
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Using Single Cell Biological Approaches to Understand CNS TB
使用单细胞生物学方法了解中枢神经系统结核
  • 批准号:
    10739081
  • 财政年份:
    2023
  • 资助金额:
    $ 49.92万
  • 项目类别:
Genomic and bioinformatic approaches for understanding the effects of childhood adversity on primary tooth formation and caries development in young children
基因组和生物信息学方法用于了解童年逆境对幼儿乳牙形成和龋齿发展的影响
  • 批准号:
    10739519
  • 财政年份:
    2023
  • 资助金额:
    $ 49.92万
  • 项目类别:
Bottom-up and top-down computational modeling approaches to study CMV retinitis
研究 CMV 视网膜炎的自下而上和自上而下的计算模型方法
  • 批准号:
    10748709
  • 财政年份:
    2023
  • 资助金额:
    $ 49.92万
  • 项目类别:
CAREER: Novel Approaches to Hyperbranched Polymers
职业:超支化聚合物的新方法
  • 批准号:
    2237487
  • 财政年份:
    2023
  • 资助金额:
    $ 49.92万
  • 项目类别:
    Continuing Grant
Systems Science Approaches for Reducing Youth Obesity Disparities
减少青少年肥胖差异的系统科学方法
  • 批准号:
    10664145
  • 财政年份:
    2023
  • 资助金额:
    $ 49.92万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了