Materials World Network: Classical and Quantum Optical Metamaterials by Combining Top-down and Bottom-up Fabrication Techniques

材料世界网络:结合自上而下和自下而上制造技术的经典和量子光学超材料

基本信息

  • 批准号:
    1210170
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-15 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARY:Benefiting from advancement of micro and nanofabrication tools, the research in metamaterials has been recently extended from microwave to terahertz and optical frequencies. The scale-down of metamaterials to meet optical frequencies, paves the way for a new class of metamaterials, namely quantum metamaterials, which could have a profound impact on a broad range of applications in telecommunication, optical imaging, energy harvesting, health care, and homeland security. However, further breakthrough in the field of optical metamaterials is hindered by several factors: (1) the capability of current top-down fabrication techniques to engineer structures at a few nanometers scale; (2) lack of long range ordering by using the bottom up nanofabrication approaches; (3) optical loss in the metal-based optical metamaterials; (4) lack of optical control at low photon levels in optical metamaterials. In this project, scientists aim to solve the above issues by combining top-down and bottom-up nanofabrication techniques for the manufacturing of optical metamaterials, and by extending metamaterials to the quantum regime to reduce the loss and to introduce novel optical control schemes that go beyond classical metamaterials. This project combines synergistically three collaborators, two in the UK and one in the US, to investigate the fabrication, characterization and modeling of novel classical and quantum optical metamaterials. The central rationale for this collaborative group is that it matches a UK group with expertise in large scale nanofabrication, a UK group in demonstrated theoretical capabilities in nonlinear optics, with a US group with demonstrated record of various optical characterization techniques. NON-TECHNICAL SUMMARY:Metamaterials are man-made materials that mimic the order of the matters. Metamaterials consist of artificially engineered "atoms" and "molecules", which can be designed to show optical properties unattainable from naturally occurring materials. Metamaterials present a novel platform for controlling light at one's will with potential applications such as a powerful imaging lens that beats the imaging diffraction limit and an invisibility cloak that renders object invisible to outside observers. By introducing a novel nanofabrication paradigm, this collaborative project aims at solving the issues that hinder the practical application of metamaterials, and bridging the gap between the proof-of-concept demonstrations in the laboratory to real world applications. The research to be undertaken here has several areas of broad impact. First, it will foster an interdisciplinary examination of the fundamental materials science, which includes fabrication, materials physics, optical physics, and theory. Second it will enable three groups in the US and the UK, with a strong history of interactions and complementary expertise and capabilities to collaborate. This work involves the opportunity for both graduate and undergraduate students to collaborate and travel in an international setting. Third, the program has concrete plans and procedures to seek out recruitment of diverse student collaborators. Fourth, the project enables students to collaborate via extended visits and shorter trips with a major National Laboratory, i.e. Lawrence Berkeley Lab, where one of the PIs was an academic staff, as well as the London Centre for Nanotechnology, UK's premier nanofabrication facility shared by the University College London and Imperial College London.This project is supported by the Electronic and Photonic Materials program and Office of Special Programs, Division of Materials Research.
技术摘要:受益于微纳加工工具的进步,超材料的研究最近已从微波扩展到太赫兹和光频率。超材料的缩小以满足光学频率的要求,为新型超材料(即量子超材料)铺平了道路,它可能对电信、光学成像、能量收集、医疗保健和医疗保健等领域的广泛应用产生深远的影响。国土安全。然而,光学超材料领域的进一步突破受到以下几个因素的阻碍:(1)当前自上而下的制造技术无法在几纳米尺度上设计结构; (2) 使用自下而上的纳米制造方法缺乏长程有序性; (3)金属基光学超材料中的光损耗; (4)光学超材料缺乏低光子水平下的光学控制。 在这个项目中,科学家们旨在通过结合自上而下和自下而上的纳米加工技术来制造光学超材料,并将超材料扩展到量子态以减少损耗并引入新颖的光学控制方案来解决上述问题。超越经典超材料。该项目由三位合作者(两位在英国,一位在美国)协同合作,研究新型经典和量子光学超材料的制造、表征和建模。该合作小组的核心理由是,它匹配了一个在大规模纳米制造方面具有专业知识的英国小组、一个在非线性光学方面展示了理论能力的英国小组以及一个在各种光学表征技术方面展示了记录的美国小组。非技术摘要:超材料是模仿物质顺序的人造材料。超材料由人工设计的“原子”和“分子”组成,可以设计成显示天然材料无法达到的光学特性。超材料提供了一个可以随意控制光的新颖平台,具有潜在的应用,例如突破成像衍射极限的强大成像镜头和使物体对外部观察者不可见的隐形斗篷。通过引入一种新颖的纳米制造范例,该合作项目旨在解决阻碍超材料实际应用的问题,并弥合实验室概念验证演示与现实世界应用之间的差距。这里要进行的研究有几个具有广泛影响的领域。首先,它将促进基础材料科学的跨学科研究,包括制造、材料物理、光学物理和理论。其次,它将使美国和英国的三个团体拥有悠久的互动历史以及互补的专业知识和合作能力。这项工作为研究生和本科生提供了在国际环境中合作和旅行的机会。第三,该项目有具体的计划和程序来招募不同的学生合作者。第四,该项目使学生能够通过长期访问和短途旅行与主要国家实验室(即劳伦斯伯克利实验室,其中一名 PI 是学术人员)以及伦敦纳米技术中心(英国首屈一指的纳米制造设施)进行合作。伦敦大学学院和伦敦帝国理工学院。该项目得到了电子和光子材料项目以及材料研究部特别项目办公室的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiang Zhang其他文献

Experimental study and kinetic analysis of the impact of ammonia co-firing ratio on products formation characteristics in ammonia/coal co-firing process
氨/煤混烧过程中氨混烧比对产物形成特性影响的实验研究及动力学分析
  • DOI:
    10.1016/j.fuel.2022.125496
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Xin Wang;Weidong Fan;Jun Chen;Guanyu Feng;Xiang Zhang
  • 通讯作者:
    Xiang Zhang
Mass spectrometric and theoretical studies on the decarboxylation of the anionic lithium complexes of the doubly deprotonated dicarboxylic acids
双去质子二羧酸阴离子锂配合物脱羧的质谱和理论研究
  • DOI:
    10.1016/j.molstruc.2012.02.027
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Xiang Zhang
  • 通讯作者:
    Xiang Zhang
Verification of the quantum nonequilibrium work relation in the presence of decoherence,
存在退相干时量子非平衡功关系的验证
  • DOI:
    10.1088/1367-2630/aa9cd6
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Andrew Smith;Yao Lu;Shuoming An;Xiang Zhang;Jing-Ning Zhang;Zongping Gong;H. T. Quan;Christopher Jarzynski;Kihwan Kim
  • 通讯作者:
    Kihwan Kim
The Embedding Flow of 3-Dimensional Locally Hyperbolic $$C^\infty $$C∞ Diffeomorphisms
Influence of resin asphalt pavement on stress behaviors of double-side welded rib-to-deck joints in orthotropic steel decks
树脂沥青路面对正交异性钢桥面板双面焊接肋板节点受力行为的影响
  • DOI:
    10.1016/j.jcsr.2022.107491
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Daoyun Yuan;Chuang Cui;Qinghua Zhang;Xiang Zhang;Zongmou Li
  • 通讯作者:
    Zongmou Li

Xiang Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiang Zhang', 18)}}的其他基金

CAREER: Multiscale Reduced Order Modeling and Design to Elucidate the Microstructure-Property-Performance Relationship of Hybrid Composite Materials
职业:通过多尺度降阶建模和设计来阐明混合复合材料的微观结构-性能-性能关系
  • 批准号:
    2341000
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CRII:SCH:Self-Supervised Contrastive Representation Learning for Medical Time Series
CRII:SCH:医学时间序列的自监督对比表示学习
  • 批准号:
    2245894
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Multiscale Reduced-Order Modeling and Experimental Framework for Lithium-ion Batteries under Mechanical Abuse Conditions
协作研究:机械滥用条件下锂离子电池的集成多尺度降阶建模和实验框架
  • 批准号:
    2114822
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
EAGER: Advancing High-Efficiency Nanoscale Antiferromagnetic Spintronics with Two-Dimensional Half Metals
EAGER:利用二维半金属推进高效纳米级反铁磁自旋电子学
  • 批准号:
    1753380
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Low-Vibration, Cryogen-Free Cryostat Microscope System
MRI:获取低振动、无冷冻剂的低温恒温器显微镜系统
  • 批准号:
    1725335
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CAREER: Novel Approaches for Mining Large and Complex Networks
职业:挖掘大型复杂网络的新方法
  • 批准号:
    1707548
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
CAREER: Novel Approaches for Mining Large and Complex Networks
职业:挖掘大型复杂网络的新方法
  • 批准号:
    1552915
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
III: Medium: Collaborative Research: Toward Robust and Scalable Discovering of Significant Associations in Massive Genetic Data
III:媒介:合作研究:在海量遗传数据中稳健且可扩展地发现显着关联
  • 批准号:
    1664629
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
INSPIRE Track 1: Exploring New Route of Optically Mediated Self-Assembly: Final Material Properties Determine Its Structures
INSPIRE 轨道 1:探索光介导自组装的新途径:最终材料特性决定其结构
  • 批准号:
    1344290
  • 财政年份:
    2013
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
III: Medium: Collaborative Research: Toward Robust and Scalable Discovering of Significant Associations in Massive Genetic Data
III:媒介:合作研究:在海量遗传数据中稳健且可扩展地发现显着关联
  • 批准号:
    1162374
  • 财政年份:
    2012
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似国自然基金

基于真实世界数据的糖尿病共病网络演化和预测
  • 批准号:
    62302065
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
应用于开放世界物体识别的检索增强视觉网络
  • 批准号:
    62376134
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
小世界分层RF/FSO Mesh网络构建与优化
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Lévy噪声激励和小世界网络结构下的神经系统的奇异态
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据驱动的世界集装箱海运网络演化机制与抗毁性研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

FAMILY WELL-BEING RESEARCH NETWORK (“FAM-NET”): Measuring Family Well-Being across the Lifespan
家庭福祉研究网络 (“FAM-NET”):衡量整个生命周期的家庭福祉
  • 批准号:
    10664959
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
FAMILY WELL-BEING RESEARCH NETWORK (“FAM-NET”): Measuring Family Well-Being across the Lifespan
家庭福祉研究网络 (“FAM-NET”):衡量整个生命周期的家庭福祉
  • 批准号:
    10437604
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
Materials World Network: Collaborative Proposal: Understanding the Optical Response of Designer Epsilon Near Zero Materials
材料世界网络:协作提案:了解设计师 Epsilon 近零材料的光学响应
  • 批准号:
    1711849
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Materials World Network, SusChEM: Hybrid Sol-Gel Route to Chromate-free Anticorrosive Coatings
材料世界网络,SusChEM:混合溶胶-凝胶路线制备无铬酸盐防腐涂料
  • 批准号:
    1313544
  • 财政年份:
    2014
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Materials World Network: Investigations of Quantum Fluctuation Relations Using Superconducting Qubits
材料世界网络:利用超导量子位研究量子涨落关系
  • 批准号:
    1312421
  • 财政年份:
    2013
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了