III: Medium: Collaborative Research: StructNet: Constructing and Mining Structure-Rich Information Networks for Scientific Research
III:媒介:协作研究:StructNet:为科学研究构建和挖掘结构丰富的信息网络
基本信息
- 批准号:1705169
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Science disciplines have been generating huge volumes of research publications, which are of tremendous value but far beyond researchers' capacity to digest and analyze. There is a critical need to automatically (with the help of widely available, general knowledge-bases) transform research text into structured information networks on which advanced search and analytics tools can be developed to facilitate researchers and practitioners to quickly locate knowledge, make inferences, and even generate new scientific hypotheses.This project aims at developing a new data-to-network-to-knowledge (D2N2K) paradigm to transform massive, unstructured but interconnected research text data into actionable knowledge, by integrating semi-structured and unstructured data. First, organized heterogeneous information networks (hence called StructNet) are constructed, and then powerful mining mechanisms on such organized networks are developed. With a focus on biomedical sciences, the project investigates the principles, methodologies and algorithms for (i) construction of relatively structured heterogeneous information networks (called MediNet) by mining biomedical research corpora via attribute extraction, relation typing, and claim mining, and (ii) exploration and mining of the networks so constructed via graph OLAP and task-guided embedding. The project develops an extensible framework to facilitate literature-based scientific research. The study on construction and exploration of MediNet not only impacts biomedical research but also consolidates this data-to-network-to knowledge methodology, readily to be transferred to other domains, for automatic transformation of massive unstructured text data in those domains into structured and actionable knowledge.
科学学科一直在产生大量的研究出版物,它们具有巨大的价值,但远远超出了研究人员的消化和分析能力。 There is a critical need to automatically (with the help of widely available, general knowledge-bases) transform research text into structured information networks on which advanced search and analytics tools can be developed to facilitate researchers and practitioners to quickly locate knowledge, make inferences, and even generate new scientific hypotheses.This project aims at developing a new data-to-network-to-knowledge (D2N2K) paradigm to transform massive, unstructured but interconnected通过整合半结构化和非结构化数据,将文本数据研究成可行的知识。首先,构建了有组织的异质信息网络(因此称为structnet),然后开发了这种有组织的网络上的强大采矿机制。 该项目着重于生物医学科学,调查了(i)通过属性提取,关系键入以及索赔挖掘以及(II)勘探和矿场构建的Olap和Tasking和Task-Gu Olap和Task-Gu Olap和Task-Gu Olap和Tasked和Tasks的构建的原理,方法和算法,以(i)构建相对结构化的异质信息网络(称为MEDINET),以及通过构建和矿场构建的Olap和任务。该项目开发了一个可扩展的框架,以促进基于文学的科学研究。关于MEDINET的构建和探索的研究不仅会影响生物医学研究,而且还巩固了这种数据到网络对知识方法,很容易将其转移到其他领域,以自动转换这些领域中的大规模非结构化文本数据,以使结构化和可行的知识转换。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
GLSearch: Maximum Common Subgraph Detection via Learning to Search
- DOI:
- 发表时间:2020-02
- 期刊:
- 影响因子:0
- 作者:Yunsheng Bai;Derek Xu;Yizhou Sun;Wei Wang
- 通讯作者:Yunsheng Bai;Derek Xu;Yizhou Sun;Wei Wang
Heterogeneous Graph Transformer
- DOI:10.1145/3366423.3380027
- 发表时间:2020-01-01
- 期刊:
- 影响因子:0
- 作者:Hu, Ziniu;Dong, Yuxiao;Sun, Yizhou
- 通讯作者:Sun, Yizhou
TIMME: Twitter Ideology-detection via Multi-task Multi-relational Embedding
- DOI:10.1145/3394486.3403275
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:Zhiping Xiao;Weiping Song;Haoyan Xu;Zhicheng Ren;Yizhou Sun
- 通讯作者:Zhiping Xiao;Weiping Song;Haoyan Xu;Zhicheng Ren;Yizhou Sun
Heterogeneous Information Networks: the Past, the Present, and the Future
- DOI:10.14778/3554821.3554901
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:Yizhou Sun;Jiawei Han;Xifeng Yan;Philip S. Yu;Tianyi Wu
- 通讯作者:Yizhou Sun;Jiawei Han;Xifeng Yan;Philip S. Yu;Tianyi Wu
Dual-Geometric Space Embedding Model for Two-View Knowledge Graphs
- DOI:10.1145/3534678.3539350
- 发表时间:2022-01-01
- 期刊:
- 影响因子:0
- 作者:Iyer, Roshni G.;Bai, Yunsheng;Sun, Yizhou
- 通讯作者:Sun, Yizhou
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yizhou Sun其他文献
User Stance Prediction via Online Behavior Mining
- DOI:
10.1145/3041021.3051144 - 发表时间:
2017-04 - 期刊:
- 影响因子:0
- 作者:
Yizhou Sun - 通讯作者:
Yizhou Sun
Unit Selection: Learning Benefit Function from Finite Population Data
单元选择:从有限人口数据中学习效益函数
- DOI:
10.48550/arxiv.2210.08203 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Ang Li;Song Jiang;Yizhou Sun;J. Pearl - 通讯作者:
J. Pearl
Getting to Know Your Data
- DOI:
10.1017/9781108683791.007 - 发表时间:
2019-09 - 期刊:
- 影响因子:0
- 作者:
Yizhou Sun - 通讯作者:
Yizhou Sun
How Do Influencers Mention Brands in Social Media? Sponsorship Prediction of Instagram Posts
有影响力的人如何在社交媒体中提及品牌?
- DOI:
10.1145/3341161.3342925 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Xiao Yang;Seungbae Kim;Yizhou Sun - 通讯作者:
Yizhou Sun
LCARS: A Spatial Item Recommender System
LCARS:空间项目推荐系统
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:5.6
- 作者:
Bin Cui;Yizhou Sun;Zhiting Hu;Ling Chen - 通讯作者:
Ling Chen
Yizhou Sun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yizhou Sun', 18)}}的其他基金
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: NSF-CSIRO: RESILIENCE: Graph Representation Learning for Fair Teaming in Crisis Response
合作研究:NSF-CSIRO:RESILIENCE:危机应对中公平团队的图表示学习
- 批准号:
2303037 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Mining and Exploring Heterogeneous Information Networks with Social Factors
职业:挖掘和探索具有社会因素的异构信息网络
- 批准号:
1741634 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Mining and Exploring Heterogeneous Information Networks with Social Factors
职业:挖掘和探索具有社会因素的异构信息网络
- 批准号:
1453800 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
复合低维拓扑材料中等离激元增强光学响应的研究
- 批准号:12374288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于管理市场和干预分工视角的消失中等企业:特征事实、内在机制和优化路径
- 批准号:72374217
- 批准年份:2023
- 资助金额:41.00 万元
- 项目类别:面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
- 批准号:12371432
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
- 批准号:12365008
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
- 批准号:42305004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
- 批准号:
2312865 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312932 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
- 批准号:
2348169 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant