Conference on Derived Algebraic Geometry

派生代数几何会议

基本信息

  • 批准号:
    1700795
  • 负责人:
  • 金额:
    $ 2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-03-01 至 2018-02-28
  • 项目状态:
    已结题

项目摘要

This project supports the participation of early-career US mathematicians in the Conference on Invertibility and Duality in Derived Algebraic Geometry and Homotopy Theory, which will be held April 3-7, 2017 at the University of Regensburg, Germany. Derived algebraic geometry is an increasingly active mathematical area that combines approaches from a number of established fields (including algebraic geometry, topology, and mathematical physics), and the conference location is a major center for work in this subject. Funds will support the travel and local expenses of junior researchers; accordingly, the direct impact will be the training and career development of 10 or more early-career US mathematicians, who will gain the opportunity to participate in a workshop in this subject, communicate their research results, and further develop collaborations with emerging research groups in Europe. Conference speakers and participants from outside of the United States will be supported by the German national research foundation (DFG) through the grants SFB-1085 and SPP-1786.In the past fifteen years, we have seen the rapid development of the field of derived algebraic geometry. Because it draws threads and inspiration from algebraic topology, algebraic geometry, algebraic K-theory, and even mathematical physics, this field has attracted a large number of early-career researchers. This conference will bring together international experts from algebraic topology, homotopy theory, derived algebraic geometry, and related areas, and the focus of the conference will be current work and emerging ideas in the field, using the existence and applications of dualities as a theme. Throughout algebraic topology and algebraic geometry, the existence of a theory of duality reveals deep structure about the objects under study. Basic examples include Poincare duality for manifolds or Serre duality for varieties, but these are expressions of much more general phenomena best studied in the derived setting. There has been significant recent progress in derived algebraic geometry, in both theory and computations. It is the aim of this conference both to consolidate these advances and to promote new research directions.Conference webpage:http://www-cgi.uni-regensburg.de/Fakultaeten/MAT/sfb-higher-invariants/index.php/SpringSchool2017
该项目支持美国早期数学家参与派生的代数几何和同型理论,该会议将于2017年4月3日至7日在德国雷根斯堡大学举行。 派生的代数几何形状是一个日益活跃的数学领域,它结合了许多既定领域(包括代数几何,拓扑结构和数学物理学)的方法,并且会议位置是该主题的主要工作中心。 资金将支持初级研究人员的旅行和当地费用; 因此,直接影响将是10名或更多早期职业的美国数学家的培训和职业发展,他们将有机会参加该主题的研讨会,传达其研究结果,并进一步与欧洲新兴研究小组进行合作。 来自美国以外的会议发言人和参与者将通过德国国家研究基金会(DFG)通过赠款SFB-1085和SPP-1786。由于它从代数拓扑,代数几何形状,代数K理论甚至数学物理学中汲取了线程和灵感,因此该领域吸引了大量早期职业研究人员。这次会议将汇集来自代数拓扑,同义理论,衍生代数几何及相关领域的国际专家,并使用二元性作为主题的存在和应用。 在整个代数拓扑结构和代数几何形状中,二元性理论的存在揭示了有关所研究对象的深层结构。基本示例包括用于歧管的繁殖二元性或品种的二元性二元性,但是这些是在派生环境中最好研究的更通用现象的表达。 在理论和计算中,衍生代数几何形状的最新进展取得了重大进展。这是本次会议的目的既要巩固这些进步并推广新的研究方向。会议网页:http://wwwww-cgi.uni-regensburg.de/fakultaeten/mat/mat/mat/sfb-higher-inger-invariants/index.php/springschool2017

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Goerss其他文献

Paul Goerss的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Goerss', 18)}}的其他基金

Workshops in Spectral Methods in Algebra, Geometry, and Topology
代数、几何和拓扑谱方法研讨会
  • 批准号:
    2230159
  • 财政年份:
    2022
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Workshops: Homotopy Harnessing Higher Structures
研讨会:利用更高结构的同伦
  • 批准号:
    1833295
  • 财政年份:
    2018
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Midwest Topology Seminar
中西部拓扑研讨会
  • 批准号:
    1747457
  • 财政年份:
    2017
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Midwest Topology Seminar, Spring 2014
中西部拓扑研讨会,2014 年春季
  • 批准号:
    1413786
  • 财政年份:
    2014
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Local and Global Chromatic Stable Homotopy Theory
局部和全局色稳定同伦理论
  • 批准号:
    1308916
  • 财政年份:
    2013
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Workshop in Equivariant, Chromatic, and Motivic Homotopy Theory
等变、半音和基元同伦理论研讨会
  • 批准号:
    1261225
  • 财政年份:
    2013
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Chromatic Stable Homotopy Theory and Derived Algebraic Geometry
色稳定同伦理论及其派生代数几何
  • 批准号:
    1007007
  • 财政年份:
    2010
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
Workshop on Homotopy theory and Derived Algebraic Geometry
同伦理论与派生代数几何研讨会
  • 批准号:
    1034873
  • 财政年份:
    2010
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
The Topology and Geometry of Topological Field Theories
拓扑场论的拓扑和几何
  • 批准号:
    0852513
  • 财政年份:
    2009
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Workshop on Stacks in Geometry and Topology
几何和拓扑堆栈研讨会
  • 批准号:
    0711566
  • 财政年份:
    2007
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant

相似国自然基金

新骨架紫杉烷二萜baccataxane的化学合成、衍生化和降糖活性研究
  • 批准号:
    82373758
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
软木衍生多孔炭中氮构型的形成机制与定向调控
  • 批准号:
    32371794
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
甲壳素/壳聚糖与碳酸酯化合物的反应规律及其衍生新材料性质研究
  • 批准号:
    22365010
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
炔丙醇衍生物的不对称共轭二烯基化反应研究
  • 批准号:
    22371125
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于原位钩钓策略的Pyxinol衍生物逆转肿瘤多药耐药的别构靶点识别研究
  • 批准号:
    22377104
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Derived equivalences and autoequivalences in algebraic geometry
代数几何中的导出等价和自等价
  • 批准号:
    EP/X01066X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2万
  • 项目类别:
    Fellowship
Wall-crossing: from classical algebraic geometry to differential geometry, mirror symmetry and derived algebraic Geometry
穿墙:从经典代数几何到微分几何、镜面对称和派生代数几何
  • 批准号:
    EP/X032779/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2万
  • 项目类别:
    Fellowship
Derived Symmetries and the Alekseev-Torossian Conjecture: From Algebraic Geometry to Knotted Objects in Dimension 4
导出的对称性和 Alekseev-Torossian 猜想:从代数几何到 4 维中的结物体
  • 批准号:
    2305407
  • 财政年份:
    2023
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Shifted Symplectic & Poisson Structures and their Quantisations in the context of Derived Algebraic Geometry
移辛
  • 批准号:
    2747173
  • 财政年份:
    2022
  • 资助金额:
    $ 2万
  • 项目类别:
    Studentship
Derived categories in arithmetic and algebraic geometry
算术和代数几何的派生范畴
  • 批准号:
    DGECR-2022-00444
  • 财政年份:
    2022
  • 资助金额:
    $ 2万
  • 项目类别:
    Discovery Launch Supplement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了