Collaborative Research: SusChEM: Understanding Hydrogen Interactions with Metastable Surfaces for Tunable Catalysis Systems
合作研究:SusChEM:了解可调谐催化系统的氢与亚稳态表面的相互作用
基本信息
- 批准号:1665305
- 负责人:
- 金额:$ 43.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The ability to transform abundant resources, such as carbon dioxide and water, into energy-dense fuels and high-valued chemicals plays an important role in our pursuit of sustainable energy and chemical technologies. These processes often benefit from the presence of a heterogeneous catalyst, a solid substance that is able to direct the chemical reactions along faster, more efficient pathways. Designing catalyst materials with structure and compositions tailored to accelerate the desired chemical transformations is an important area of chemical research. In this project, a collaborative effort among Dr. Richard Hennig, Dr. Richard Robinson, and Dr. Jin Suntivich targets variation in composition and structure to create catalysts known as "metastable catalysts" since they fall outside of the normal solubility and structural ranges. The team is examining how to design and build metastable catalysts that efficiently and selectively convert carbon dioxide and water to hydrogen and high-valued compounds. Beyond creating new knowledge that can bring more sustainable energy and chemical technologies closer to reality, the investigators are actively engaged in outreach educational activities. These include a summer internship in the principle investigators' laboratories for undergraduate students and the creation of catalysis demonstration kits designed to disseminate the concepts of atomic building blocks and their role in catalysis technology. These activities are directed at improving student interest in chemical science and materials technology from the K-12 to undergraduate levels, and particularly target women and members of underrepresented minorities to build diversity in the STEM workforce.With support from the Chemical Catalysis program of the Chemistry Division, a collaborative project among Dr. Richard Hennig, Dr. Richard Robinson, and Dr. Jin Suntivich is examining how metastable surfaces can be structured to control the surface hydrogen interaction, and, consequently, the hydrogen evolution reaction and carbon dioxide reduction catalysis. The surface hydrogen interaction is believed to play an important role in stabilizing the intermediates of the hydrogen evolution reaction and the selectivity of the carbon dioxide reduction reaction. This project exploits metastable oxysulfide nanocrystals as model systems with expanded compositional ranges to enable a systematic analysis of composition, surface interaction and electrocatalytic performance. Combined theoretical and experimental studies are used in collaboration to verify the structure - activity connection at the atomic level and allows the PIs to determine how to design the surface structure and composition rationally to improve the catalysis performance. Broader impacts of the research result from an improved understanding of catalyst function and design in sustainable energy and chemical technologies. Broader impacts made through educational activities include graduate and undergraduate student trainings in chemical catalysis research from both theory and experiment sides in the principal investigators' laboratories. Additionally, catalysis demonstration kits are created to visually illustrate how to build catalytic nanomaterials from atomic building blocks and how each different building block can affect selected catalysis performance.
将二氧化碳和水等丰富资源转化为能量密集型燃料和高价值化学品的能力在我们追求可持续能源和化学技术的过程中发挥着重要作用。 这些过程通常受益于非均相催化剂的存在,这种固体物质能够引导化学反应沿着更快、更有效的途径进行。 设计具有适合加速所需化学转化的结构和成分的催化剂材料是化学研究的一个重要领域。 在该项目中,Richard Hennig 博士、Richard Robinson 博士和 Jin Suntivich 博士共同致力于改变成分和结构,以制造被称为“亚稳态催化剂”的催化剂,因为它们超出了正常的溶解度和结构范围。 该团队正在研究如何设计和构建亚稳态催化剂,以有效、选择性地将二氧化碳和水转化为氢气和高价值化合物。除了创造可以使更可持续的能源和化学技术更接近现实的新知识之外,研究人员还积极参与外展教育活动。其中包括为本科生在主要研究人员实验室进行暑期实习,以及创建催化演示套件,旨在传播原子构建单元的概念及其在催化技术中的作用。这些活动旨在提高从 K-12 到本科阶段的学生对化学科学和材料技术的兴趣,特别针对女性和代表性不足的少数族裔成员,以建立 STEM 劳动力队伍的多样性。在化学学院化学催化项目的支持下Division 是 Richard Hennig 博士、Richard Robinson 博士和 Jin Suntivich 博士之间的一个合作项目,正在研究如何构建亚稳态表面来控制表面氢相互作用,从而控制析氢反应和二氧化碳还原催化。表面氢相互作用被认为在稳定析氢反应的中间体和二氧化碳还原反应的选择性方面发挥着重要作用。该项目利用亚稳态硫氧化物纳米晶体作为具有扩展组成范围的模型系统,以实现对组成、表面相互作用和电催化性能的系统分析。理论与实验研究相结合,在原子水平上验证结构-活性联系,使PI能够确定如何合理设计表面结构和组成,以提高催化性能。该研究的更广泛影响源于对可持续能源和化学技术中催化剂功能和设计的更好理解。 通过教育活动产生的更广泛影响包括主要研究人员实验室的理论和实验方面的化学催化研究研究生和本科生培训。此外,还创建了催化演示套件,以直观地说明如何从原子构件构建催化纳米材料,以及每种不同的构件如何影响选定的催化性能。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Iron and nitrogen-doped double gyroid mesoporous carbons for oxygen reduction in acidic environments
- DOI:10.1088/2515-7655/abc31a
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:F. Matsuoka;Kevin E. Fritz;P. Beaucage;Fei Yu;Jin Suntivich;U. Wiesner
- 通讯作者:F. Matsuoka;Kevin E. Fritz;P. Beaucage;Fei Yu;Jin Suntivich;U. Wiesner
Tertiary Hierarchical Complexity in Assemblies of Sulfur-Bridged Metal Chiral Clusters
- DOI:10.1021/jacs.0c04764
- 发表时间:2020-08-26
- 期刊:
- 影响因子:15
- 作者:Han, Haixiang;Yao, Yuan;Robinson, Richard D.
- 通讯作者:Robinson, Richard D.
Multiscale hierarchical structures from a nanocluster mesophase
- DOI:10.1038/s41563-022-01223-3
- 发表时间:2022-04-14
- 期刊:
- 影响因子:41.2
- 作者:Han, Haixiang;Kallakuri, Shantanu;Robinson, Richard D.
- 通讯作者:Robinson, Richard D.
Predicting the Electrochemical Synthesis of 2D Materials from First Principles
- DOI:10.1021/acs.jpcc.8b10802
- 发表时间:2019-02-07
- 期刊:
- 影响因子:3.7
- 作者:Ashton, Michael;Trometer, Nicole;Hennig, Richard G.
- 通讯作者:Hennig, Richard G.
Assessment of Soft Ligand Removal Strategies: Alkylation as a Promising Alternative to High-Temperature Treatments for Colloidal Nanoparticle Surfaces
- DOI:10.1021/acsmaterialslett.9b00089
- 发表时间:2019-06
- 期刊:
- 影响因子:11.4
- 作者:Andrew Nelson;Yixu Zong;Kevin E. Fritz;Jin Suntivich;R. D. Robinson
- 通讯作者:Andrew Nelson;Yixu Zong;Kevin E. Fritz;Jin Suntivich;R. D. Robinson
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jin Suntivich其他文献
In Situ Stimulated Raman Spectroscopy Reveals the Phosphate Network in the Amorphous Cobalt Oxide Catalyst and Its Role in the Catalyst Formation
原位受激拉曼光谱揭示了非晶态氧化钴催化剂中的磷酸盐网络及其在催化剂形成中的作用
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:3.7
- 作者:
C. Eom;Jin Suntivich - 通讯作者:
Jin Suntivich
Effects of Mesoporosity and Conductivity of Hierarchically Porous Carbon Supports on the Deposition of Pt Nanoparticles and Their Performance as Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media.
多级孔碳载体的介孔性和电导率对 Pt 纳米颗粒沉积及其作为碱性介质中氧还原反应电催化剂性能的影响。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:9.5
- 作者:
G. Potsi;Yu;A. Reese;Da;Jeremy L. Hitt;Antonios Kouloumpis;Jin Suntivich;D. Muller;T. Mallouk;E. Giannelis - 通讯作者:
E. Giannelis
In-situ non-equilibrium nanomechanics in a proton-conducting ceramic at low temperatures
低温质子传导陶瓷中的原位非平衡纳米力学
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
O. Gorobtsov;Yumeng Song;Kevin E. Fritz;D. Weinstock;Yifei Sun;D. Sheyfer;W. Cha;Jin Suntivich;A. Singer - 通讯作者:
A. Singer
Lawrence Berkeley National Laboratory Recent Work Title Tailoring manganese oxide with atomic precision to increase surface site availability for oxygen reduction catalysis Permalink
劳伦斯伯克利国家实验室最近的工作标题以原子精度定制氧化锰以增加氧还原催化的表面位点可用性
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
J. Eom;Ding;C. Adamo;E. Moon;S. May;E. Crumlin;D. Schlom;Jin Suntivich - 通讯作者:
Jin Suntivich
Integrated-Evanescent Raman Sensors Based on Titanium-Dioxide Nanophotonics
基于二氧化钛纳米光子学的集成倏逝拉曼传感器
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
C. C. Evans;Chengyu Liu;Jin Suntivich - 通讯作者:
Jin Suntivich
Jin Suntivich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jin Suntivich', 18)}}的其他基金
CAS-Climate: Electroadsorption Kinetics on Transition Metals: Measurement and Mechanism
CAS-Climate:过渡金属的电吸附动力学:测量和机理
- 批准号:
2155157 - 财政年份:2022
- 资助金额:
$ 43.73万 - 项目类别:
Standard Grant
Selective Hydrocarbon Production from Carbon Dioxide Electro-reduction via Electrochemical Potential and Mass Transport Engineering
通过电化学势和传质工程从二氧化碳电还原选择性生产碳氢化合物
- 批准号:
1805400 - 财政年份:2018
- 资助金额:
$ 43.73万 - 项目类别:
Standard Grant
相似国自然基金
多场耦合条件下固态金属锂电池枝晶生长和界面电化学反应机制原位电镜研究
- 批准号:
- 批准年份:2020
- 资助金额:260 万元
- 项目类别:联合基金项目
高低温液相电化学原位透射电镜样品杆研究平台的研制
- 批准号:
- 批准年份:2019
- 资助金额:693.52 万元
- 项目类别:国家重大科研仪器研制项目
液体环境下MXene电极材料电化学储能机理的原位透射电镜研究
- 批准号:11804106
- 批准年份:2018
- 资助金额:29.0 万元
- 项目类别:青年科学基金项目
原位透射电镜研究高硫负载量锂硫电池硫正极材料的单体锂化及其电化学性能
- 批准号:11804048
- 批准年份:2018
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
低维金属纳米材料化学置换反应机理的原位液体环境球差校正透射电子显微学动态研究
- 批准号:11874001
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
- 批准号:
2324346 - 财政年份:2023
- 资助金额:
$ 43.73万 - 项目类别:
Standard Grant
Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
- 批准号:
2324345 - 财政年份:2023
- 资助金额:
$ 43.73万 - 项目类别:
Standard Grant
SusChEM: Collaborative Research: Identification of the critical length scales and chemistries responsible for the anti-fouling properties of heterogeneous surfaces
SusChEM:合作研究:确定负责异质表面防污性能的临界长度尺度和化学成分
- 批准号:
2023847 - 财政年份:2019
- 资助金额:
$ 43.73万 - 项目类别:
Standard Grant
SusChem Collaborative Research: Process Optimization of Novel Routes for the Production of bio-based Para-Xylene
SusChem 合作研究:生物基对二甲苯生产新路线的工艺优化
- 批准号:
2005905 - 财政年份:2019
- 资助金额:
$ 43.73万 - 项目类别:
Continuing Grant
SusChEM: Collaborative Research: Efficient biological activation and conversion of short-chain hydrocarbons
SusChEM:合作研究:短链碳氢化合物的高效生物活化和转化
- 批准号:
1938893 - 财政年份:2018
- 资助金额:
$ 43.73万 - 项目类别:
Standard Grant