SusChem Collaborative Research: Process Optimization of Novel Routes for the Production of bio-based Para-Xylene
SusChem 合作研究:生物基对二甲苯生产新路线的工艺优化
基本信息
- 批准号:2005905
- 负责人:
- 金额:$ 20.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1434548 (Ierapetritou), 1434456 (Vlachos)The need to minimize anthropogenic CO2 emissions and our dependence on foreign fossil fuels has been a main driver for the discovery and development of renewable and sustainable production of fuels and chemicals from other sources. Toward this goal, non-edible lignocellulosic biomass (plant biomass composed of cellulose, hemicellulose, and lignin) is a promising renewable feedstock since it is abundant, does not directly compete with the food chain, can lead to nearly carbon-free processes with concomitant reduction in CO2 emissions, and contains the building block of chemicals and fuels, i.e., carbon. It has been estimated that the annual crude oil demands in the US are of the same order of magnitude as the potentially available quantities of lignocellulosic materials and the throughput of chemicals is significantly lower, compared to fuels, and can easily be met. The recent boom in shale gas reduces our dependence on foreign petroleum, but also reduces the cracking of naphtha and thus, the production of C3-C6 chemicals from fossil fuels. One such example is BTX (Benzene, Toluene, Xylenes). Among BTX constituents, p-xylene (pX) is of great interest since it is the foundation for terephthalic acid (a polymer precursor for PET bottles used for the vast majority of food and liquid containers) and has an annual global demand of ~35 million metric tons/yr in 2010. The consumption of PET is expected to increase by 4-5%/yr over the next five years. pX has a similar number of carbon atoms to the building blocks of lignocellulose, and thus, its renewable production is an appealing target and forms the basis of the case study of the proposed work. Penetration of biomass based chemicals into existing markets requires that their production is sustainable and cost competitive to that of the petrochemical counterparts. Economic analysis and life cycle analysis (LCA) are often conducted to evaluate new biomass-based processes. It is emphatically the case that such predictions (including our own work) are based on rudimentary information, e.g., overall yield, and as such, are very uncertain. Currently, catalysts, solvents, and separation schemes are by-and-large discovered by trial and error. This situation is reminiscent of the genesis of oil industry that was followed by a century of discovery to evolve to its current mature stage. In order to realize renewable routes in the foreseeable future, a paradigm shift in philosophy and strategy is necessary that leverages recent scientific advances and core capabilities. It is the thesis of this research that a symbiotic program between systems analysis and fundamental science can lead to knowledge-based discovery and rapid commercialization while advancing scientific frontiers. This grand challenge-based vision defines the intellectual merit of the proposed program.Intellectual Merit: To meet this grand challenge-based objective, a "hierarchical multiscale" program is planned, where systems analysis is informing the fundamental science of key processes and parameters, and the science team is performing experiments and simulations to collect this much needed knowledge to reduce systems uncertainty and render systems predictions reliable. In simple terms, the systems analysis focuses the space of scientific research and accelerates knowledge generation, where it makes sense to have, and the science in turn makes economic and life cycle analyses more reliable. The conversion of biomass-derived sugars to para-xylene has been selected as a representative case study. Broader Impact: The proposed work will have impact on the specific domain of catalytic kinetics, separation technology, systems analysis, and the overall goal of establishing a sustainable manufacturing route of valuable chemicals from lignocellulose. The introduction of renewable chemicals can have a major impact on US economic development and sustainability. Similar to petro-based refineries, process synthesis will unavoidably play a vital role in sustainable and cost-effective biorefineries. The hierarchical multiscale program proposed herein can also pave the way of future research efforts between disciplines toward accelerated discovery and genesis of knowledge where is most impactful. The results will be disseminated broadly through publications, lectures, and integration of research findings within the graduate and undergraduate curricula of the two institutions involved. Graduate students will be trained in interdisciplinary science, including catalysis, reaction engineering, separation sciences, and process systems engineering, by establishing a new way of thinking in the development of a sustainable chemical process. In addition, the PIs will broaden participation of students from underrepresented groups and provide an enriching experience to K-12 students through a variety of educational activities.
1434548(IERAPETRITOU),1434456(VLACHOS)需要最大程度地减少人为二氧化碳的排放,而我们对外国化石燃料的依赖是发现和开发可再生和可持续生产的燃料和化学物质的主要驱动力。为了实现这一目标,不可用的木质纤维素生物量(由纤维素,半纤维素和木质素组成的植物生物量)是一个有希望的可再生原料,因为它丰富了,与食物链没有直接竞争,可以与食物链竞争,可以导致几乎无碳的工艺与CO2降低二氧化合物和化学成分。据估计,与燃料相比,美国的年度原油需求与潜在可用数量的木质纤维素材料的数量级相同,化学物质的吞吐量明显较低,并且很容易满足。页岩气的最近繁荣减少了我们对外国石油的依赖,但也减少了石脑油的破裂,因此从化石燃料中产生了C3-C6化学物质。一个例子是BTX(苯,甲苯,二甲苯)。在BTX成分中,P-二甲苯(PX)引起了极大的兴趣,因为它是苯甲酸的基础(用于绝大多数食品和液体容器的PET瓶的聚合物前体的基础),并且每年的全球需求在2010年的全球需求约为3500万公吨/年。 PX具有与木质纤维素的基础相似的碳原子,因此,其可再生生产是一个有吸引力的目标,是拟议工作的案例研究的基础。基于生物量的化学物质在现有市场中的渗透要求它们的生产是可持续的,并且成本与石化对应物的成本具有竞争力。经常进行经济分析和生命周期分析(LCA)以评估新的基于生物质的过程。这种预测(包括我们自己的工作)是基于基本信息,例如总收益率,因此非常不确定。当前,催化剂,溶剂和分离方案是通过反复试验发现的。这种情况让人联想到石油工业的起源,随后是一个世纪的发现,以发展到目前的成熟阶段。为了在可预见的将来实现可再生路线,必须在哲学和战略上改变范式的范式,以利用最近的科学进步和核心能力。这项研究的论点是,系统分析与基本科学之间的共生计划可以导致基于知识的发现和快速商业化,同时推进科学领域。这种基于挑战的愿景定义了拟议计划的智力优点。智能优点:为了满足这个基于挑战的目标,计划了一个“等级多尺度”计划,在该计划中,系统分析正在为关键过程和参数的基本科学提供信息,而科学团队的基本科学则是科学实验和仿真来收集这一大量知识,以降低系统的不可分割的系统,并降低系统的不利信息。简而言之,系统分析侧重于科学研究的空间,并加速了知识的生成,具有意义,而科学又使经济和生命周期分析更加可靠。生物质衍生的糖向二甲苯的转化已被选为代表性案例研究。更广泛的影响:拟议的工作将影响催化动力学,分离技术,系统分析的特定领域,以及建立木质纤维素有价值化学物质的可持续制造途径的总体目标。引入可再生化学品可以对美国的经济发展和可持续性产生重大影响。与基于石油的炼油厂类似,过程合成将不可避免地在可持续性和成本效益的生物精制中起着至关重要的作用。本文提出的层次多尺度计划还可以铺平学科之间未来研究工作的方式,以加速发现和知识的起源在哪里最有影响力。结果将通过出版物,讲座和研究结果整合在涉及的两个机构的研究生和本科课程中广泛传播。研究生将接受跨学科科学的培训,包括催化,反应工程,分离科学和过程系统工程,通过在开发可持续化学过程的开发中建立一种新的思维方式。此外,PI将扩大来自代表性不足的小组的学生的参与,并通过各种教育活动为K-12学生提供丰富的经验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marianthi Ierapetritou其他文献
Application of flowsheet modeling for scheduling and debottlenecking analysis to support the development and scale-up of a plasma-derived therapeutic protein purification process
- DOI:
10.1016/j.bej.2024.109501 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Chaoying Ding;Matthew Kujawa;Michael Bartkovsky;Maen Qadan;Marianthi Ierapetritou - 通讯作者:
Marianthi Ierapetritou
Flux balance analysis and peptide mapping elucidate the impact of bioreactor pH on Chinese hamster ovary (CHO) cell metabolism and N-linked glycosylation in the fab and Fc regions of the produced IgG
- DOI:
10.1016/j.ymben.2024.11.005 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Jayanth Venkatarama Reddy;Sumit Kumar Singh;Thomas Leibiger;Kelvin H. Lee;Marianthi Ierapetritou;Eleftherios Terry Papoutsakis - 通讯作者:
Eleftherios Terry Papoutsakis
Topology-informed derivative-free metaheuristic optimization method
- DOI:
10.1016/j.compchemeng.2024.108973 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:
- 作者:
Ching-Mei Wen;Marianthi Ierapetritou - 通讯作者:
Marianthi Ierapetritou
Machine learning-based optimization of a multi-step ion exchange chromatography for ternary protein separation
- DOI:
10.1016/j.compchemeng.2024.108642 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:
- 作者:
Chaoying Ding;Marianthi Ierapetritou - 通讯作者:
Marianthi Ierapetritou
Effect of material properties on the residence time distribution (RTD) of a tablet press feed frame
- DOI:
10.1016/j.ijpharm.2020.119961 - 发表时间:
2020-12-15 - 期刊:
- 影响因子:
- 作者:
Ryoichi Furukawa;Ravendra Singh;Marianthi Ierapetritou - 通讯作者:
Marianthi Ierapetritou
Marianthi Ierapetritou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marianthi Ierapetritou', 18)}}的其他基金
FMRG: Eco: A Systems-Enabled Paradigm Shift for Modular Sustainable Chemical Manufacturing
FMRG:Eco:系统支持的模块化可持续化学制造范式转变
- 批准号:
2134471 - 财政年份:2022
- 资助金额:
$ 20.24万 - 项目类别:
Standard Grant
Supply Chain Decision Making Framework Considering Uncertainty
考虑不确定性的供应链决策框架
- 批准号:
2217472 - 财政年份:2022
- 资助金额:
$ 20.24万 - 项目类别:
Standard Grant
EAGER: Cybermanufacturing: Advanced Modeling and Information Management in Pharmaceutical Manufacturing
EAGER:网络制造:药品制造中的高级建模和信息管理
- 批准号:
1547171 - 财政年份:2015
- 资助金额:
$ 20.24万 - 项目类别:
Standard Grant
SusChem Collaborative Research: Process Optimization of Novel Routes for the Production of bio-based Para-Xylene
SusChem 合作研究:生物基对二甲苯生产新路线的工艺优化
- 批准号:
1434548 - 财政年份:2014
- 资助金额:
$ 20.24万 - 项目类别:
Continuing Grant
Workshop on Process Intensification September 30-October 1, 2014, Arlington, VA
过程强化研讨会 2014 年 9 月 30 日至 10 月 1 日,弗吉尼亚州阿灵顿
- 批准号:
1450788 - 财政年份:2014
- 资助金额:
$ 20.24万 - 项目类别:
Standard Grant
Integration of scheduling and control using closed loop implementation
使用闭环实现集成调度和控制
- 批准号:
1159244 - 财政年份:2012
- 资助金额:
$ 20.24万 - 项目类别:
Continuing Grant
Innovative methodologies for integrated planning and scheduling and industrial applications
集成规划和调度以及工业应用的创新方法
- 批准号:
0966861 - 财政年份:2010
- 资助金额:
$ 20.24万 - 项目类别:
Standard Grant
Commercializing of Continuous Pharmaceutical Manufacturing Technology
连续药物制造技术的商业化
- 批准号:
0951845 - 财政年份:2009
- 资助金额:
$ 20.24万 - 项目类别:
Standard Grant
Systematic Mathematical Strategies for Stochastic Modeling and Uncertainty in Production Planning and Scheduling
生产计划和调度中随机建模和不确定性的系统数学策略
- 批准号:
0625515 - 财政年份:2006
- 资助金额:
$ 20.24万 - 项目类别:
Standard Grant
Travel Grant: FOCAPO 2008: Multi-Scale Integration of R&D, Manufacturing, and Optimization for Enterprise-Wide Operations
旅行补助金:FOCAPO 2008:R 的多尺度整合
- 批准号:
0638947 - 财政年份:2006
- 资助金额:
$ 20.24万 - 项目类别:
Standard Grant
相似国自然基金
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
在线医疗团队协作模式与绩效提升策略研究
- 批准号:72371111
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
- 批准号:62373044
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
- 批准号:82372548
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
- 批准号:32302064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
- 批准号:
2324346 - 财政年份:2023
- 资助金额:
$ 20.24万 - 项目类别:
Standard Grant
Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
- 批准号:
2324345 - 财政年份:2023
- 资助金额:
$ 20.24万 - 项目类别:
Standard Grant
SusChEM: Collaborative Research: Identification of the critical length scales and chemistries responsible for the anti-fouling properties of heterogeneous surfaces
SusChEM:合作研究:确定负责异质表面防污性能的临界长度尺度和化学成分
- 批准号:
2023847 - 财政年份:2019
- 资助金额:
$ 20.24万 - 项目类别:
Standard Grant
SusChEM: Collaborative Research: Efficient biological activation and conversion of short-chain hydrocarbons
SusChEM:合作研究:短链碳氢化合物的高效生物活化和转化
- 批准号:
1938893 - 财政年份:2018
- 资助金额:
$ 20.24万 - 项目类别:
Standard Grant
Collaborative Research: SusChEM: Engineering the thermotolerant yeast Kluyveromyces marxianus for the synthesis of biobased chemicals
合作研究:SusChEM:改造耐热酵母马克斯克鲁维酵母用于合成生物基化学品
- 批准号:
1803630 - 财政年份:2018
- 资助金额:
$ 20.24万 - 项目类别:
Standard Grant