CAREER: SusChEM: Data Mining to Reduce the Risk in Discovering New Sustainable Thermoelectric Materials

职业:SusChEM:通过数据挖掘降低发现新型可持续热电材料的风险

基本信息

  • 批准号:
    1651668
  • 负责人:
  • 金额:
    $ 58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL SUMMARY:Humanity faces a number of grand challenges in engineering in the 21st century ranging from making solar energy affordable, to inventing new tools for scientific discovery, to preventing nuclear terror and more. A common requirement to many of these challenges is the need to discover new materials but traditional materials discovery is slow, inefficient, and expensive. Clearly, a new tool is required to develop new materials faster and at a fraction of the cost. One possibility is to rely on big data to accelerate materials discovery. This project serves the national interest by using data mining tools to create a materials recommendation engine for new sustainable thermoelectric materials. This engine will provide recommendations for new materials based off of statistical probability of desired performance. Scientists will be able to use this tool to guide experimental efforts to explore totally new compounds that would be too risky to investigate otherwise. Since thermoelectrics are devices that can convert waste heat to electricity the potential for this project to benefit the United States is significant. Currently close to two thirds of energy is lost as waste heat and recovering even a small fraction of this with new thermoelectric materials would amount to enormous energy savings. The PI will also leverage this research opportunity to supplement his teaching and outreach efforts. Students will construct novel thermoelectric devices and use these devices to perform bilingual Spanish/English outreach to minority-majority high school and junior high students in Salt Lake City.TECHNICAL SUMMARY:Discovering new materials is slow, inefficient, and expensive. These factors make searching for novel new materials from chemical white space very high risk. Instead, most new developments occur incrementally in already known or established structure types, chemistries, and systems. However, the risk associated with exploring chemical white space for new compounds can be mitigated by utilizing the emergent field of materials informatics. In this proposal novel, sustainable thermoelectric compositions will be suggested using a materials recommendation engine for thermoelectrics. The engine uses composition only to make probabilistic estimates of performance rather than computationally expensive calculations which generally require knowledge of the crystal structure a priori. Avoiding crystal structure as an initial input means entirely new compounds can be discovered with this tool. The engine output is a probability of compositions lying within a desired performance range. Therefore, this project will combine these predictions with existing predictions of where compounds should form to experimentally explore novel thermoelectric materials. The training data set for algorithm and descriptor development will be improved by inclusion of performance of poor, mediocre, as well as good materials to overcome the bias in literature for high-performing materials. Experimental synthesis and characterization will be carried out on suggested compounds and for algorithm validation.
非技术概要:人类在 21 世纪面临着工程方面的许多重大挑战,从使太阳能变得负担得起,到发明用于科学发现的新工具,到防止核恐怖等等。许多这些挑战的共同要求是需要发现新材料,但传统材料的发现速度慢、效率低且昂贵。显然,需要一种新工具来更快地以较低的成本开发新材料。一种可能性是依靠大数据来加速材料发现。该项目通过使用数据挖掘工具为新型可持续热电材料创建材料推荐引擎来服务于国家利益。该引擎将根据所需性能的统计概率为新材料提供建议。科学家将能够使用这个工具来指导探索全新化合物的实验工作,否则进行研究的风险太大。由于热电装置可以将废热转化为电能,因此该项目为美国造福的潜力是巨大的。目前,近三分之二的能量以废热的形式损失掉,即使使用新的热电材料回收其中的一小部分,也将节省大量能源。 PI 还将利用这一研究机会来补充他的教学和推广工作。学生将构建新颖的热电设备,并使用这些设备对盐湖城的少数族裔高中生和初中生进行西班牙语/英语双语推广。技术摘要:发现新材料缓慢、低效且昂贵。这些因素使得从化学空白区寻找新颖的新材料的风险非常高。相反,大多数新的发展是在已知或已建立的结构类型、化学物质和系统中逐步发生的。然而,通过利用新兴的材料信息学领域可以减轻与探索新化合物的化学空白相关的风险。在本提案中,将使用热电材料推荐引擎来建议新颖的、可持续的热电组合物。该引擎仅使用成分来对性能进行概率估计,而不是进行昂贵的计算,而计算通常需要先验了解晶体结构。避免将晶体结构作为初始输入意味着可以使用该工具发现全新的化合物。发动机输出是成分处于期望性能范围内的概率。因此,该项目将把这些预测与化合物应在何处形成的现有预测结合起来,以实验探索新型热电材料。用于算法和描述符开发的训练数据集将通过纳入性能较差、平庸以及良好的材料来改进,以克服文献中对高性能材料的偏见。将对建议的化合物进行实验合成和表征并进行算法验证。

项目成果

期刊论文数量(44)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data-Driven Studies of Li-Ion-Battery Materials
锂离子电池材料的数据驱动研究
  • DOI:
    10.3390/cryst9010054
  • 发表时间:
    2019-01-18
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Steven K. Kauwe;T. Rhone;Taylor D. Sparks
  • 通讯作者:
    Taylor D. Sparks
What is a minimal working example for a self-driving laboratory?
自动驾驶实验室的最小工作示例是什么?
  • DOI:
    10.1016/j.matt.2022.11.007
  • 发表时间:
    2022-12-01
  • 期刊:
  • 影响因子:
    18.9
  • 作者:
    Sterling G. Baird;Taylor D. Sparks
  • 通讯作者:
    Taylor D. Sparks
Not Just Par for the Course: 73 Quaternary Germanides RE 4 M 2 X Ge 4 ( RE = La–Nd, Sm, Gd–Tm, Lu; M = Mn–Ni; X = Ag, Cd) and the Search for Intermetallics with Low Thermal Conductivity
不仅仅是课程的标准杆:73 四元锗化物 RE 4 M 2 X Ge 4 (RE = La–Nd, Sm, Gd–Tm, Lu; M = Mn–Ni; X = Ag, Cd) 和搜索
  • DOI:
    10.1021/acs.inorgchem.8b02279
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Zhang, Dong;Oliynyk, Anton O.;Duarte, Gabriel M.;Iyer, Abishek K.;Ghadbeigi, Leila;Kauwe, Steven K.;Sparks, Taylor D.;Mar, Arthur
  • 通讯作者:
    Mar, Arthur
Not as simple as we thought: a rigorous examination of data aggregation in materials informatics
并不像我们想象的那么简单:材料信息学中数据聚合的严格检查
  • DOI:
    10.1039/d3dd00207a
  • 发表时间:
    2024-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ottomano, Federico;De Felice, Giovanni;Gusev, Vladimir V.;Sparks, Taylor D.
  • 通讯作者:
    Sparks, Taylor D.
Compositionally restricted attention-based network for materials property predictions
用于材料性能预测的基于成分限制的注意网络
  • DOI:
    10.1038/s41524-021-00545-1
  • 发表时间:
    2020-02-20
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    A. Wang;Steven K. Kauwe;Ryan Murdock;Taylor D. Sparks
  • 通讯作者:
    Taylor D. Sparks
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Taylor Sparks其他文献

Taylor Sparks的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Taylor Sparks', 18)}}的其他基金

EAGER: SSMCDAT2023: Natural Language Processing and Large Language Models for Automated Extraction of Materials Chemistry Data from Scientific Literature
EAGER:SSMCDAT2023:用于从科学文献中自动提取材料化学数据的自然语言处理和大型语言模型
  • 批准号:
    2334411
  • 财政年份:
    2023
  • 资助金额:
    $ 58万
  • 项目类别:
    Standard Grant
REU Site: Research Experience in Utah for Sustainable Materials Engineering (ReUSE)
REU 网站:犹他州可持续材料工程(再利用)的研究经验
  • 批准号:
    1950589
  • 财政年份:
    2020
  • 资助金额:
    $ 58万
  • 项目类别:
    Standard Grant
Collaborative Research: SSMCDAT2020: Solid-State and Materials Chemistry Data Science Hackathon
合作研究:SSMCDAT2020:固态和材料化学数据科学黑客马拉松
  • 批准号:
    1938734
  • 财政年份:
    2019
  • 资助金额:
    $ 58万
  • 项目类别:
    Standard Grant
Collaborative Research: Guided Discovery of Sustainable Superhard Materials via Bond Optimization
合作研究:通过键优化引导可持续超硬材料的发现
  • 批准号:
    1562226
  • 财政年份:
    2016
  • 资助金额:
    $ 58万
  • 项目类别:
    Standard Grant

相似国自然基金

多场耦合条件下固态金属锂电池枝晶生长和界面电化学反应机制原位电镜研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    260 万元
  • 项目类别:
    联合基金项目
高低温液相电化学原位透射电镜样品杆研究平台的研制
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    693.52 万元
  • 项目类别:
    国家重大科研仪器研制项目
液体环境下MXene电极材料电化学储能机理的原位透射电镜研究
  • 批准号:
    11804106
  • 批准年份:
    2018
  • 资助金额:
    29.0 万元
  • 项目类别:
    青年科学基金项目
低维金属纳米材料化学置换反应机理的原位液体环境球差校正透射电子显微学动态研究
  • 批准号:
    11874001
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
原位透射电镜研究高硫负载量锂硫电池硫正极材料的单体锂化及其电化学性能
  • 批准号:
    11804048
  • 批准年份:
    2018
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
  • 批准号:
    2324346
  • 财政年份:
    2023
  • 资助金额:
    $ 58万
  • 项目类别:
    Standard Grant
Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
  • 批准号:
    2324345
  • 财政年份:
    2023
  • 资助金额:
    $ 58万
  • 项目类别:
    Standard Grant
SusChEM: Harnessing Stable Peroxides for Selective Nitrogen Atom and Fluoroalkyl Transfer
SusChEM:利用稳定的过氧化物进行选择性氮原子和氟烷基转移
  • 批准号:
    2200040
  • 财政年份:
    2022
  • 资助金额:
    $ 58万
  • 项目类别:
    Standard Grant
CAREER: SusChEM: Renewable Biocatalysts for Degradation of Persistent Organic Contaminants Using Synthetic Biology
职业:SusChEM:利用合成生物学降解持久性有机污染物的可再生生物催化剂
  • 批准号:
    2154345
  • 财政年份:
    2021
  • 资助金额:
    $ 58万
  • 项目类别:
    Continuing Grant
SusChEM: C-H Bond Electroactivation of Nonpolar Organic Substrates in Water: Enzyme-Mediated Reaction Pathways in Microemulsions
SusChEM:水中非极性有机底物的 C-H 键电活化:微乳液中酶介导的反应途径
  • 批准号:
    2035669
  • 财政年份:
    2021
  • 资助金额:
    $ 58万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了