Finite Simple Groups: Thirty Years of the Atlas and Beyond

有限简单群:阿特拉斯三十年及以后

基本信息

  • 批准号:
    1455798
  • 负责人:
  • 金额:
    $ 3.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

This award supports participation in the conference "Finite Simple Groups: Thirty Years of the Atlas and Beyond" taking place November 2-5, 2015, at Princeton University in Princeton, NJ. The concept of a group in mathematics grew out of the notion of symmetry. The symmetries of an object in nature or science are encoded by a group, and this group carries important information about the structure of the object itself. Group theory has had many important applications in physics and chemistry, particularly in quantum mechanics and in the theory of elementary particles. The main theme of the conference will be the interaction between theory and computation, and applications of group theory to other areas of mathematics. The list of invited participants features senior and junior researchers from across these fields and thus will foster further interaction and collaboration between them, during and after the conference. Conference activities will include informal working groups organized by experts in the field to discuss current and future research directions during the conference; a poster session; a webpage; and a wiki. The proceedings of the conference will be published.The classification of finite simple groups, one of the most monumental accomplishments of the modern mathematics, was announced to be completed in 1983. Since then, it has opened up a new and powerful strategy to approach and resolve many, previously inaccessible problems in group theory, number theory, combinatorics, coding theory, algebraic geometry, and other areas of mathematics. This strategy utilizes information about finite simple groups, some of which is catalogued in the "Atlas of Finite Groups" and "An Atlas of Brauer Characters." It is impossible to overestimate the roles of the atlases and the related computer algebra systems in everyday life of researchers in many areas of contemporary mathematics. The conference will bring together a diverse group of researchers in group theory, representation theory, and computational group theory. The objective of the conference is to discuss numerous applications of the Atlases and to explore recent developments and future directions of research.
该奖项支持参加会议“有限简单团体:Atlas及以后的30年”,于2015年11月2日至5日在新泽西州普林斯顿的普林斯顿大学举行。数学群体的概念是从对称的概念中得出的。对象在自然或科学中的对称性是由一个组编码的,该组传递了有关对象本身结构的重要信息。小组理论在物理和化学中有许多重要的应用,尤其是在量子力学和基本颗粒理论中。会议的主要主题是理论与计算之间的相互作用,以及小组理论在其他数学领域的应用。邀请参与者的名单是来自这些领域的高级和初级研究人员,因此会在会议期间和之后促进他们之间的进一步互动和协作。会议活动将包括该领域专家组织的非正式工作组,讨论会议期间的当前和未来研究指示;海报会议;网页;和Wiki。 The proceedings of the conference will be published.The classification of finite simple groups, one of the most monumental accomplishments of the modern mathematics, was announced to be completed in 1983. Since then, it has opened up a new and powerful strategy to approach and resolve many, previously inaccessible problems in group theory, number theory, combinatorics, coding theory, algebraic geometry, and other areas of mathematics.该策略利用有关有限简单组的信息,其中一些是在“有限群体的地图集”和“ Brauer字符的地图集”中分类的。在许多当代数学领域的研究人员的日常生活中,地图集和相关计算机代数系统的作用是不可能高估地图集的作用。 该会议将汇集一群在群体理论,代表理论和计算群体理论方面的研究人员。会议的目的是讨论地图集的众多应用,并探讨最新的发展和未来研究方向。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pham Tiep其他文献

Pham Tiep的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pham Tiep', 18)}}的其他基金

Representations of Finite Groups and Applications
有限群的表示及其应用
  • 批准号:
    2200850
  • 财政年份:
    2022
  • 资助金额:
    $ 3.99万
  • 项目类别:
    Continuing Grant
Groups Representations and Applications: New Perspectives
群体表示和应用:新视角
  • 批准号:
    1907670
  • 财政年份:
    2019
  • 资助金额:
    $ 3.99万
  • 项目类别:
    Standard Grant
Group Representations and Applications
团体代表和申请
  • 批准号:
    1840702
  • 财政年份:
    2018
  • 资助金额:
    $ 3.99万
  • 项目类别:
    Continuing Grant
Representations of Finite Groups and Applications
有限群的表示及其应用
  • 批准号:
    1839351
  • 财政年份:
    2018
  • 资助金额:
    $ 3.99万
  • 项目类别:
    Continuing Grant
Group Representations and Applications
团体代表和申请
  • 批准号:
    1665014
  • 财政年份:
    2017
  • 资助金额:
    $ 3.99万
  • 项目类别:
    Continuing Grant
Representations of Finite Groups and Applications
有限群的表示及其应用
  • 批准号:
    1201374
  • 财政年份:
    2012
  • 资助金额:
    $ 3.99万
  • 项目类别:
    Continuing Grant
Representations of Finite Groups and Applications
有限群的表示及其应用
  • 批准号:
    0964957
  • 财政年份:
    2009
  • 资助金额:
    $ 3.99万
  • 项目类别:
    Continuing Grant
Group Representations and Applications
团体代表和申请
  • 批准号:
    0901241
  • 财政年份:
    2009
  • 资助金额:
    $ 3.99万
  • 项目类别:
    Continuing Grant
Conference "Group Representations and Combinatorics"
会议“群表示和组合学”
  • 批准号:
    0735168
  • 财政年份:
    2007
  • 资助金额:
    $ 3.99万
  • 项目类别:
    Standard Grant
Representations of Finite Groups and Applications
有限群的表示及其应用
  • 批准号:
    0600967
  • 财政年份:
    2006
  • 资助金额:
    $ 3.99万
  • 项目类别:
    Continuing Grant

相似国自然基金

精准、简单且通量的糖组质谱定量新方法研究
  • 批准号:
    32371506
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
过渡金属催化简单烯烃的不对称氧化官能化反应研究
  • 批准号:
    22331012
  • 批准年份:
    2023
  • 资助金额:
    230.00 万元
  • 项目类别:
    重点项目
可见光促进简单烯烃的化学选择性(杂)芳基化研究
  • 批准号:
    22301299
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
简单图和符号图的零度及相关问题研究
  • 批准号:
    12361069
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
适合于缺乏强震记录地区抗震设计的场地效应简单评价方法
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Calculating the Essential p-Dimension of the Finite Simple Groups
计算有限单群的本质 p 维数
  • 批准号:
    2302822
  • 财政年份:
    2023
  • 资助金额:
    $ 3.99万
  • 项目类别:
    Fellowship Award
Classification of Finite Simple Groups. Groups of even type of medium size.
有限简单群的分类。
  • 批准号:
    EP/V05547X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 3.99万
  • 项目类别:
    Fellowship
Subgroup Structure of certain Exceptional Finite Simple Groups
某些例外有限简单群的子群结构
  • 批准号:
    2617662
  • 财政年份:
    2021
  • 资助金额:
    $ 3.99万
  • 项目类别:
    Studentship
Combinatorial Structures associated with Classical Finite Simple Groups
与经典有限单群相关的组合结构
  • 批准号:
    2608958
  • 财政年份:
    2021
  • 资助金额:
    $ 3.99万
  • 项目类别:
    Studentship
Embeddings of Simple Groups in Exceptional Finite Simple Groups
简单群在异常有限简单群中的嵌入
  • 批准号:
    2616638
  • 财政年份:
    2021
  • 资助金额:
    $ 3.99万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了