SI2-SSI: LIMPID: Large-Scale IMage Processing Infrastructure Development

SI2-SSI:LIMPID:大规模图像处理基础设施开发

基本信息

项目摘要

Scientific imaging is ubiquitous: From materials science, biology, neuroscience and brain connectomics, marine science and remote sensing, to medicine, much of the big data science is image centric. Currently, interpretation of images is usually performed within isolated research groups either manually or as workflows over narrowly defined conditions with specific datasets. This LIMPID (Large-scale IMage Processing Infrastructure Development) project will have a transformative impact on such discipline-centric workflows through the creation of an extensive and unique resource for the curation, distribution and sharing of scientific image analysis methods. The project will create an image processing marketplace for use by a diverse community of researchers, enabling them to discover, test, verify and refine image analysis methods within a shared infrastructure. As a freely available, cloud-based resource, LIMPID will facilitate participation of underrepresented groups and minority-serving institutions, as well as international scientists, allowing them to address questions that would otherwise require expensive software. The potential impacts of the project are significant: from wide dissemination of novel processing methods, to development of automatic methods that can leverage data and human feedback from large datasets for software training and validation. For the broader scientific community, this immediately provides a resource for joint data and methods publication, with provenance control and security. This in turn will facilitate faster development and deployment of tools and foster new collaborations between computer scientists developing methods and scientific users. The project will prepare a diverse cadre of students and researchers, including women and members of under-represented groups, to tackle complex problems in an interdisciplinary environment. Through workshops, participation at scientific meetings, and summer undergraduate research internships, a broad community of users will be engaged to actively contribute to all aspects of research, development, and training during the course of this project.  The primary goal is to create a large scale distributed image processing infrastructure, the LIMPID, though a broad,  interdisciplinary collaboration of researchers in databases, image analysis, and sciences.  In order to create a resource of broad appeal, the focus will be on three types of image processing: simple detection and labelling of objects based on detection of significant features and leveraging recent advances in deep learning, semi-custom pipelines and workflows based on popular image processing tools, and finally fully customizable analysis routines.  Popular image processing pipeline tools will be leveraged to allow users to create or customize existing pipeline workflows and easily test these on large-scale cloud infrastructure from their desktop or mobile devices. In addition, a core cloud-based platform will be created where custom image processing can be created, shared, modified, and executed on large-scale datasets and apply novel methods to minimize data movement. Usage test cases will be created for three specific user communities: materials science, marine science and neuroscience. An industry supported consortium will be established at the beginning of the project towards achieving long-term sustainability of the LIMPID infrastructure.This project is supported by the Office of Advanced Cyberinfrastructure in the Directorate for Computer & Information Science and Engineering and the Division of Materials Research in the Directorate for Mathematical and Physical Sciences.
科学成像无处不在:从材料科学,生物学,神经科学和脑连接组学,海洋科学和遥远敏感性到医学,大部分大数据科学都以图像为中心。当前,图像的解释通常是在孤立的研究组中手动或用特定数据集的狭义条件上的工作流进行的。这个Limpid(大规模图像处理基础架构开发)项目将通过创建用于课程,科学图像分析方法的课程,分发和共享的广泛而独特的资源,对以学科为中心的工作流产生变革性的影响。该项目将创建一个图像处理市场,以供研究人员的潜水员社区使用,使他们能够在共享基础架构中发现,测试,验证和完善图像分析方法。作为免费的,基于云的资源,Limpid将有助于促进代表性不足的团体和少数族裔服务机构的参与,以及国际科学家,使他们能够解决否则需要昂贵软件的问题。该项目的潜在影响是重要的:从新型处理方法的广泛传播到可以利用大型数据集中数据和人类反馈的自动方法进行软件培训和验证。对于更广泛的科学界而言,这立即提供了共同数据和方法出版物的资源,并提供了来源控制和安全性。反过来,这将有助于更快地开发和部署工具,并促进计算机科学家开发方法和科学用户之间的新合作。该项目将准备多样化的学生和研究人员,包括妇女和代表性不足的群体的成员,以解决跨学科环境中的复杂问题。通过讲习班,参加科学会议以及夏季的本科研究实习,将在本项目的过程中积极参与研究,开发和培训的各个方面。主要目标是创建一个大规模的分布式图像处理基础架构,即研究人员在数据库,图像分析和科学方面的广泛,跨学科的合作。为了创建广泛的外观资源,重点将放在三种类型的图像处理上:基于对重要特征的检测并利用基于流行的图像处理工具的深度学习,半定期管道和工作流程的最新进展,对对象进行了简单检测和标记,并利用了最终的可定制分析。流行的图像处理管道工具将被利用,以允许用户创建或自定义现有的管道工作流程,并轻松地从其台式机或移动设备上在大规模的云基础架构上测试它们。此外,将创建一个基于核心的云平台,可以在大规模数据集中创建,共享,修改和执行自定义图像处理,并应用新颖的方法以最小化数据移动。将为三个特定用户社区创建使用测试用例:材料科学,海洋科学和神经科学。项目开始时将建立一个由行业支持的财团,以实现Limpid基础设施的长期可持续性。该项目得到了计算机与信息科学与工程局的高级网络策略办公室以及数学和物理科学局的材料研究局的支持。

项目成果

期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Context-Driven Detection of Invertebrate Species in Deep-Sea Video
  • DOI:
    10.1007/s11263-023-01755-4
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    19.5
  • 作者:
    R. McEver;Bowen Zhang-;Connor Levenson;A S M Iftekhar;B. S. Manjunath
  • 通讯作者:
    R. McEver;Bowen Zhang-;Connor Levenson;A S M Iftekhar;B. S. Manjunath
Adaptable physics-based super-resolution for electron backscatter diffraction maps
适用于电子背散射衍射图的基于物理的超分辨率
  • DOI:
    10.1038/s41524-022-00924-2
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Jangid, Devendra K.;Brodnik, Neal R.;Goebel, Michael G.;Khan, Amil;Majeti, SaiSidharth;Echlin, McLean P.;Daly, Samantha H.;Pollock, Tresa M.;Manjunath, B. S.
  • 通讯作者:
    Manjunath, B. S.
Q-RBSA: high-resolution 3D EBSD map generation using an efficient quaternion transformer network
  • DOI:
    10.48550/arxiv.2303.10722
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Devendra K. Jangid;Neal R. Brodnik;M. Echlin;T. Pollock;S. Daly;B. S. Manjunath
  • 通讯作者:
    Devendra K. Jangid;Neal R. Brodnik;M. Echlin;T. Pollock;S. Daly;B. S. Manjunath
Gtnet: guided transformer network for detecting human-object interactions
  • DOI:
    10.1117/12.2663936
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A S M Iftekhar;Satish Kumar;R. McEver;Suya You;B. S. Manjunath
  • 通讯作者:
    A S M Iftekhar;Satish Kumar;R. McEver;Suya You;B. S. Manjunath
3D Grain Shape Generation in Polycrystals Using Generative Adversarial Networks
共 25 条
  • 1
  • 2
  • 3
  • 4
  • 5
前往

Bangalore Manjunat...的其他基金

EAGER: Collaborative 3D Materials Science Research in the Cloud
EAGER:云端协作 3D 材料科学研究
  • 批准号:
    1650972
    1650972
  • 财政年份:
    2016
  • 资助金额:
    $ 340万
    $ 340万
  • 项目类别:
    Standard Grant
    Standard Grant
ABI Development: BISQUE - Scalable Image Informatics for Quantitative Biology
ABI 开发:BISQUE - 用于定量生物学的可扩展图像信息学
  • 批准号:
    1356750
    1356750
  • 财政年份:
    2014
  • 资助金额:
    $ 340万
    $ 340万
  • 项目类别:
    Standard Grant
    Standard Grant
CDI-Type-II: Computational Challenges in the Discovery and Understanding of Complex Boiological Structures through Multimodal Imaging
CDI-Type-II:通过多模态成像发现和理解复杂生物结构的计算挑战
  • 批准号:
    0941717
    0941717
  • 财政年份:
    2009
  • 资助金额:
    $ 340万
    $ 340万
  • 项目类别:
    Standard Grant
    Standard Grant
III-CXT-Large: Working with Uncertain Data in Exploring Scientific Images
III-CXT-Large:在探索科学图像时使用不确定数据
  • 批准号:
    0808772
    0808772
  • 财政年份:
    2008
  • 资助金额:
    $ 340万
    $ 340万
  • 项目类别:
    Standard Grant
    Standard Grant
Information Technology Research (ITR): Next-Generation Bio-Molecular Imaging and Information Discovery
信息技术研究 (ITR):下一代生物分子成像和信息发现
  • 批准号:
    0331697
    0331697
  • 财政年份:
    2003
  • 资助金额:
    $ 340万
    $ 340万
  • 项目类别:
    Cooperative Agreement
    Cooperative Agreement
IGERT: Graduate Training Program in Interactive Digital Multimedia
IGERT:交互式数字多媒体研究生培训计划
  • 批准号:
    0221713
    0221713
  • 财政年份:
    2002
  • 资助金额:
    $ 340万
    $ 340万
  • 项目类别:
    Continuing Grant
    Continuing Grant
An Image Thesaurus for Content Based Search Using Texture and Color
使用纹理和颜色进行基于内容搜索的图像同义词库
  • 批准号:
    9704785
    9704785
  • 财政年份:
    1997
  • 资助金额:
    $ 340万
    $ 340万
  • 项目类别:
    Continuing Grant
    Continuing Grant

相似国自然基金

考虑SSI效应的导管架式海洋平台抗震性能研究
  • 批准号:
    52208510
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
考虑SSI效应的导管架式海洋平台抗震性能研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
考虑SSI的层间隔震高层建筑结构在三维地震下的响应研究
  • 批准号:
    52168072
  • 批准年份:
    2021
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
考虑SSI效应的大型储罐动力学特性及其隔板减晃研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    61 万元
  • 项目类别:
    面上项目
考虑SSI效应的摇摆墙-框架结构抗震机理及性能评估方法研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目

相似海外基金

小学校理科における合意形成能力の育成 ーSSIが関わる内容を対象としてー
培养小学科学中建立共识的技能 - 针对与 SSI 相关的内容 -
  • 批准号:
    24H02435
    24H02435
  • 财政年份:
    2024
  • 资助金额:
    $ 340万
    $ 340万
  • 项目类别:
    Grant-in-Aid for Encouragement of Scientists
    Grant-in-Aid for Encouragement of Scientists
Perioperative Oral Care in Head and Neck Cancer Patients for Prevention of Infection
头颈癌患者围术期口腔护理预防感染
  • 批准号:
    22H03389
    22H03389
  • 财政年份:
    2022
  • 资助金额:
    $ 340万
    $ 340万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)
The DECREASE SSI Trial (Decolonization to Reduce After-Surgery Events of Surgical Site Infection)
DECREASE SSI 试验(去殖民化以减少手术部位感染的术后事件)
  • 批准号:
    10670860
    10670860
  • 财政年份:
    2022
  • 资助金额:
    $ 340万
    $ 340万
  • 项目类别:
Design of science teaching strategies aimed at implementing 'integration' in the Society 5.0 era
社会5.0时代“融合”的科学教学策略设计
  • 批准号:
    22K03006
    22K03006
  • 财政年份:
    2022
  • 资助金额:
    $ 340万
    $ 340万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
The DECREASE SSI Trial (Decolonization to Reduce After-Surgery Events of Surgical Site Infection)
DECREASE SSI 试验(去殖民化以减少手术部位感染的术后事件)
  • 批准号:
    10501944
    10501944
  • 财政年份:
    2022
  • 资助金额:
    $ 340万
    $ 340万
  • 项目类别: