Collaborative research: Combining models and observations to constrain the marine iron cycle
合作研究:结合模型和观测来限制海洋铁循环
基本信息
- 批准号:1658380
- 负责人:
- 金额:$ 47.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Tiny marine organisms called phytoplankton play a critical role in Earth's climate, by absorbing carbon dioxide from the atmosphere. In order to grow, these phytoplankton require nutrients that are dissolved in seawater. One of the rarest and most important of these nutrients is iron. Even though it is a critical life-sustaining nutrient, oceanographers still do not know much about how iron gets into the ocean, or how it is removed from seawater. In the past few years, scientists have made many thousands of measurements of the amount of dissolved iron in seawater, in environments ranging from the deep sea, to the Arctic, to the tropical oceans. They found that the amount of iron in seawater varies dramatically from place to place. Can this data tell us about how iron gets into the ocean, and how it is ultimately removed? Yes. In this project, scientists working on making measurements of iron in seawater will come together with scientists who are working on computer models of iron inputs and removal in the ocean. The goal is to work together to create a program that allows our computer models to "learn" from the data, much like an Artificial Intelligence program. This program will develop a "best estimate" of where and how much iron is coming into the ocean, how long it stays in the ocean, and ultimately how it gets removed. This will lead to a better understanding of how climate change will impact the delivery of iron to the ocean, and how phytoplankton will respond to climate change. With better climate models, society can make more informed decisions about how to respond to climate change. The study will also benefit a future generation of scientists, by training graduate students in a unique collaboration between scientists making seawater measurements, and those using computer models to interpret those measurements. Finally, the project aims to increase the participation of minority and low-income students in STEM (Science, Technology, Engineering, and Mathematics) research, through targeted outreach programs.Iron (Fe) is an important micronutrient for marine phytoplankton that limits primary productivity over much of the ocean; however, the major fluxes in the marine Fe cycle remain poorly quantified. Ocean models that attempt to synthesize our understanding of Fe biogeochemistry predict widely different Fe inputs to the ocean, and are often unable to capture first-order features of the Fe distribution. The proposed work aims to resolve these problems using data assimilation (inverse) methods to "teach" the widely used Biogeochemical Elemental Cycling (BEC) model how to better represent Fe sources, sinks, and cycling processes. This will be achieved by implementing BEC in the efficient Ocean Circulation Inverse Model and expanding it to simulate the cycling of additional tracers that constrain unique aspects of the Fe cycle, including aluminum, thorium, helium and Fe isotopes. In this framework, the inverse model can rapidly explore alternative representations of Fe-cycling processes, guided by new high-quality observations made possible in large part by the GEOTRACES program. The work will be the most concerted effort to date to synthesize these rich datasets into a realistic and mechanistic model of the marine Fe cycle. In addition, it will lead to a stronger consensus on the magnitude of fluxes in the marine Fe budget, and their relative importance in controlling Fe limitation of marine ecosystems, which are areas of active debate. It will guide future observational efforts, by identifying factors that are still poorly constrained, or regions of the ocean where new data will dramatically reduce remaining uncertainties and allow new robust predictions of Fe cycling under future climate change scenarios to be made, ultimately improving climate change predictions. A broader impact of this work on the scientific community will be the development of a fast, portable, and flexible global model of trace element cycling, designed to allow non-modelers to test hypotheses and visualize the effects of different processes on trace metal distributions. The research will also support the training of graduate students, and outreach to low-income and minority students in local school districts.
通过吸收大气中的二氧化碳,称为浮游植物的微小海洋生物在地球气候中起着至关重要的作用。为了生长,这些浮游植物需要溶于海水中的营养。这些营养素中最稀有,最重要的是铁。即使它是一种持久的生命养分,海洋学家仍然对铁如何进入海洋或如何将其从海水中移出。在过去的几年中,科学家对海水中溶解的铁的数量进行了数千种测量,从深海到北极到热带海洋的环境。他们发现,海水中的铁量因地点而异。这些数据能否告诉我们铁如何进入海洋以及最终如何将其删除?是的。在这个项目中,致力于对海水进行铁测量的科学家将与正在研究铁投入的计算机模型并在海洋中拆除的科学家一起。目的是共同创建一个程序,使我们的计算机模型可以从数据中“学习”,就像人工智能程序一样。该计划将制定一个“最佳估计”,即在哪里和多少铁进入海洋,在海洋中持续多长时间,并最终将其去除。这将使人们更好地了解气候变化将如何影响铁向海洋的传递以及浮游植物如何应对气候变化。有了更好的气候模型,社会可以就如何应对气候变化做出更明智的决定。这项研究还将通过培训研究生进行海水测量的科学家与使用计算机模型来解释这些测量值的科学家之间进行独特的合作,从而使未来的科学家受益。最后,该项目旨在通过有针对性的外展计划来增加少数群体和低收入学生参与STEM(科学,技术,工程和数学)研究。然而,海洋铁循环中的主要通量仍然很差。试图综合我们对FE生物地球化学的理解的海洋模型预测了对海洋的FE输入截然不同,并且通常无法捕获Fe分布的一阶特征。提出的工作旨在使用数据同化(反向)方法来解决这些问题,以“教”广泛使用的生物地球化学元素循环(BEC)模型如何更好地表示FE来源,水槽和循环过程。这将通过在有效的海洋循环反向模型中实现BEC来实现,并扩展其模拟其他示踪剂的循环,这些示踪剂限制了FE循环的独特方面,包括铝,thor,Thorium,氦气和FE同位素。在此框架中,逆模型可以迅速探索Fe循环过程的替代表示,并在大部分在Geotraces计划中大部分的新高质量观察中指导。迄今为止,这项工作将是将这些丰富的数据集合成为船舶FE周期的现实机械模型的最合成的努力。此外,这将导致对海洋铁预算中通量的大小提高共识,以及它们在控制海洋生态系统的FE限制方面的相对重要性,这是积极辩论的领域。它将通过确定仍然受到限制的因素,或在新数据将大大减少剩余的不确定性,并允许在未来的气候变化情景下对FE循环的新预测,最终改善气候变化预测的新数据。这项工作对科学界的更广泛的影响将是开发快速,便携式和灵活的痕量元素循环全球模型,旨在允许非模型测试者检验假设并可视化不同过程对痕量金属分布的影响。这项研究还将支持对研究生的培训,并向当地学区的低收入和少数族裔学生推广。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CYCLOCIM: A 4-D variational assimilation system for the climatological mean seasonal cycle of the ocean circulation
CYCLOCIM:海洋环流气候平均季节循环的 4-D 变分同化系统
- DOI:10.1016/j.ocemod.2021.101762
- 发表时间:2021
- 期刊:
- 影响因子:3.2
- 作者:Huang, Qian;Primeau, François;DeVries, Tim
- 通讯作者:DeVries, Tim
Biogeochemical controls of surface ocean phosphate
表层海洋磷酸盐的生物地球化学控制
- DOI:10.1126/sciadv.aax0341
- 发表时间:2019-08-01
- 期刊:
- 影响因子:13.6
- 作者:Martiny, Adam C.;Lomas, Michael W.;Moore, J. Keith
- 通讯作者:Moore, J. Keith
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jefferson Moore其他文献
Jefferson Moore的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jefferson Moore', 18)}}的其他基金
Collaborative Research: Particle scavenging controls on trace element distributions
合作研究:微量元素分布的粒子清除控制
- 批准号:
2124014 - 财政年份:2021
- 资助金额:
$ 47.07万 - 项目类别:
Standard Grant
Collaborative Research: ETBC--The Cycling of Nitrogen in an Earth System Model: Constraints and Implications for Climate Change
合作研究:ETBC——地球系统模型中的氮循环:气候变化的约束和影响
- 批准号:
1021776 - 财政年份:2010
- 资助金额:
$ 47.07万 - 项目类别:
Standard Grant
A Model-Data Synthesis Study of the Marine Iron Cycle
海洋铁循环的模型数据综合研究
- 批准号:
0928204 - 财政年份:2009
- 资助金额:
$ 47.07万 - 项目类别:
Standard Grant
Collaborative Research: The Pan-Arctic climate and ecosystem response to historical and projected changes in the seasonality of sea ice melt and growth
合作研究:泛北极气候和生态系统对海冰融化和生长季节性变化的历史和预测变化的响应
- 批准号:
0902045 - 财政年份:2009
- 资助金额:
$ 47.07万 - 项目类别:
Standard Grant
Global Atmospheric Nutrient Deposition and Ocean Biogeochemistry
全球大气养分沉降和海洋生物地球化学
- 批准号:
0452972 - 财政年份:2005
- 资助金额:
$ 47.07万 - 项目类别:
Standard Grant
REU Site: Summer Fellowships in Biogeochemistry and Climate Change at the University of California, Irvine
REU 网站:加州大学欧文分校生物地球化学和气候变化夏季奖学金
- 批准号:
0453495 - 财政年份:2005
- 资助金额:
$ 47.07万 - 项目类别:
Continuing Grant
相似国自然基金
ABHD6与AMPA受体结合位点的鉴定及该位点在AMPA受体转运和功能调控中的作用研究
- 批准号:32300794
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
α-突触核蛋白与脂肪酸结合蛋白FABP3相互作用维持自身低聚体形态的机制研究
- 批准号:82301632
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NLRC3与HSP90结合调控KLF4泛素化在血管内膜新生中的作用及机制研究
- 批准号:82300483
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
可聚合聚乙烯亚胺组装界面构建化学结合混合层促进牙本质粘接的机制研究
- 批准号:82301118
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于时域分辨的单个量子点的双激子结合能研究
- 批准号:62305201
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research:CIF:Small:Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
- 批准号:
2326905 - 财政年份:2024
- 资助金额:
$ 47.07万 - 项目类别:
Standard Grant
Collaborative Research:CIF:Small: Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
- 批准号:
2326904 - 财政年份:2024
- 资助金额:
$ 47.07万 - 项目类别:
Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
- 批准号:
2308680 - 财政年份:2023
- 资助金额:
$ 47.07万 - 项目类别:
Continuing Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
- 批准号:
2308679 - 财政年份:2023
- 资助金额:
$ 47.07万 - 项目类别:
Continuing Grant
Collaborative Research: Combining Heterogeneous Data Sources to Identify Genetic Modifiers of Diseases
合作研究:结合异质数据源来识别疾病的遗传修饰因素
- 批准号:
2309825 - 财政年份:2023
- 资助金额:
$ 47.07万 - 项目类别:
Continuing Grant