Collaborative Research: Structural and functional architecture shaping neural tuning within the human posterior superior temporal sulcus

合作研究:塑造人类颞上沟内神经调节的结构和功能架构

基本信息

  • 批准号:
    1658278
  • 负责人:
  • 金额:
    $ 22.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-01-15 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Humans are social creatures with extensive neural systems dedicated to the skills required to navigate interactions with others. This includes decoding the actions of others to infer goals and intentions, and planning our own actions that are appropriate for the current context. Brain regions that support these skills are anatomically dispersed in the four lobes of the brain, organized as a network with communication via long-range white matter connections. One key hub of this network is the posterior superior temporal sulcus (pSTS). The work is this proposal will address an important outstanding question: how the long-range connections supporting action understanding are organized, and the nature of the information that is integrated through these connections. This work will combine structural and functional brain imaging to identify anatomical pathways connecting systems supporting action recognition, with particular attention to pathways through the pSTS, and will use computational statistical analyses to characterize the neural information that is carried through those pathways. This problem is of urgent scientific and clinical relevance: Neuroscience increasingly recognizes that brain regions do not function in isolation, but instead reflect the integration of neural signaling from many cortical sources. The work in this proposal seeks to advance brain science by explicitly modeling these sources in a targeted cortical network. The action recognition network holds additional importance to the public, as some neurodevelopmental disorders (such as autism) are linked to atypical development of the pSTS and poor communication within this neural network. Therefore the outcomes from this work may be critical for developing new clinical tools for diagnosis and interventions for these disorders. Implementing the work in this grant will also support the full engagement and promotion of under-represented and first-generation of young scientists training in neuroscientific research. The problem of how information is communicated and structured within the action recognition network is an important one. Many competing scientific models exist as to the functional specialization of the posterior superior temporal sulcus and connected brain regions within the action recognition network. New empirical data and analytical techniques are required to advance these theoretical models. A key to understanding information structure within the pSTS and the larger action recognition network is to evaluate the sources integrated within the neural signals, which reflect both sensory-driven perceptual analysis of social cues and the top-down goal-directed signals modulate influences. The work in this proposal will combine innovative experimental design with advanced multivariate statistical analyses to extract structure from the rich regional brain activation response, and will decompose the contribution of sensory-driven and top-down signals on neural tuning. At the same time, one must consider where top-down goal-directed signals originate and the structural pathways by which they are transmitted. The work in this proposal is innovative in that it will characterize the network architecture, both structurally and functionally, using a combination of tools rarely implemented despite their clear complementarity.
人类是社会生物,具有广泛的神经系统,致力于与他人进行互动所需的技能。这包括解码他人以推断目标和意图的行动,并计划适合当前环境的行动。支持这些技能的大脑区域在解剖学上分散在大脑的四个叶中,该网络是通过长期白质连接进行通信的网络组织的。该网络的一个关键枢纽是后颞上沟(PSTS)。这项工作是该提案将解决一个重要的杰出问题:如何组织支持行动理解的远程联系,以及通过这些连接整合的信息的性质。这项工作将结合结构和功能性脑成像,以确定连接动作识别系统的解剖途径,并特别注意通过PST对途径,并将使用计算统计分析来表征通过这些途径携带的神经信息。这个问题是紧迫的科学和临床相关性:神经科学越来越多地认识到大脑区域不孤立起作用,而是反映了许多皮质来源的神经信号传导的整合。该提案中的工作旨在通过在目标皮质网络中明确建模这些来源来推进脑科学。行动识别网络对公众来说是更重要的,因为某些神经发育障碍(例如自闭症)与PST的非典型发展和此神经网络中的沟通不良有关。因此,这项工作的结果对于开发新的诊断临床工具和这些疾病干预措施可能至关重要。在这笔赠款中实施这项工作还将支持对神经科学研究的年轻科学家培训的全面参与和促进代表性不足和第一代。在动作识别网络中如何传达和结构信息的问题是一个重要的问题。在动作识别网络中,在后颞上沟和连接的大脑区域的功能专业方面存在许多相互竞争的科学模型。需要新的经验数据和分析技术来推进这些理论模型。理解PST中信息结构和更大的动作识别网络中的信息结构的关键是评估整合在神经信号中的来源,这既反映了对社会线索的感官驱动的感知分析,又反映了自上而下的目标指导信号调节影响。该提案中的工作将结合创新的实验设计与先进的多元统计分析,以从丰富的区域大脑激活响应中提取结构,并将感觉驱动和自上而下的神经调节信号的贡献分解。同时,必须考虑自上而下的目标信号的起源以及传输的结构途径。该提案中的工作具有创新性,因为它将在结构和功能上使用一系列工具组合来表征网络体系结构,尽管它们具有明确的互补性,但它们很少实施。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Configuration of the action observation network depends on the goals of the observer
  • DOI:
    10.1016/j.neuropsychologia.2023.108704
  • 发表时间:
    2023-11-04
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Zhou,Xiaojue;Stehr,Daniel A.;Grossman,Emily D.
  • 通讯作者:
    Grossman,Emily D.
Optimizing multivariate pattern classification in rapid event-related designs
  • DOI:
    10.1016/j.jneumeth.2023.109808
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Daniel A. Stehr;Javier O. Garcia;John A. Pyles;E. Grossman
  • 通讯作者:
    Daniel A. Stehr;Javier O. Garcia;John A. Pyles;E. Grossman
Top-Down Attention Guidance Shapes Action Encoding in the pSTS
pSTS 中自上而下的注意力引导塑造动作编码
  • DOI:
    10.1093/cercor/bhab029
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Stehr, Daniel A;Zhou, Xiaojue;Tisby, Mariel;Hwu, Patrick T;Pyles, John A;Grossman, Emily D
  • 通讯作者:
    Grossman, Emily D
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Pyles其他文献

John Pyles的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
面向航空弱刚性结构装配的人-多机器人共融协作机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向航空弱刚性结构装配的人-多机器人共融协作机制研究
  • 批准号:
    52205017
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
面向结构化环境的多机器人协作信息趋向气味溯源方法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向结构化环境的多机器人协作信息趋向气味溯源方法研究
  • 批准号:
    62103122
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
  • 批准号:
    2341950
  • 财政年份:
    2024
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
  • 批准号:
    2347322
  • 财政年份:
    2024
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
  • 批准号:
    2347321
  • 财政年份:
    2024
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
  • 批准号:
    2341951
  • 财政年份:
    2024
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Standard Grant
Collaborative Research: SBP: Increasing Social Equality in STEM through Children's Structural Reasoning
合作研究:SBP:通过儿童的结构推理提高 STEM 中的社会平等
  • 批准号:
    2317713
  • 财政年份:
    2023
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了