EFRI NewLAW: Non-Reciprocal, Parametric Amplification of Acoustic Waves for Future Generation of RF Front-Ends

EFRI NewLAW:用于下一代射频前端的声波非互易参数放大

基本信息

  • 批准号:
    1641128
  • 负责人:
  • 金额:
    $ 200万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

This proposal leverages the advancements made on electromagnetic devices developed by the semiconductor industry by exploiting new time-reversal symmetry breaking using an acoustic wave platform to develop innovative devices more compact and efficient compared to electromagnetic devices. These new acoustic devices are capable of routing waves in specified directions and/or amplifying them without generating additional noise while also being compatible with existing acoustic devices to form acoustic ?chips?. The proposed innovative research combines concepts from electrical engineering and mechanical engineering to develop new solutions for important problems facing our future industries. This hybrid research program develops an entirely new paradigm for future wireless components by emphasizing system level figures of merit and system integration concepts necessary for the next generation electromagnetic devices. This approach requires cross-disciplinary interactions between traditionally dissimilar fields of electromagnetic waves and acoustic waves yielding a hybrid team capable of significant advancements. The proposed efforts also include educational emphasis for both undergraduate and K-12 students focusing on student educational experiences promoting systems level hybrid engineering concepts. Undergraduate students will be introduced to RF engineering applications closely aligned with this program. Additional students from underrepresented urban high schools in the Los Angeles area will be incorporated into ongoing summer research programs available at UCLA that incorporate system-level engineering concepts. The potential discoveries present in this research can bring a new revolution to wireless communication and sensor technologies. This advancement represents an order of magnitude miniaturization in the RF front-end while benefiting the entire system from extremely small form factors to substantially reduced costs. These advancements facilitate a wider deployment of electromagnetic sensors and devices necessary for future autonomous vehicles and environmental protection. A sensitive, interference resilient RF front-end also meets the ultimate need of wireless communications in cluttered environments, as interference and jamming have been primary challenges in many wireless communication scenarios. By breaking time-reversal symmetry of acoustic wave propagation with parametric modulation, non-reciprocity is obtained on an acoustic wave platform. The proposed effort will yield a new class of acoustic devices based on this principle, such as acoustic amplifiers, mixers and circulators providing orders of magnitude improvement in efficiency while dramatically reducing sizes. This is achieved by leveraging (1) the slow velocity and small wavelength of acoustic waves at RF to reduce the transmission lines footprint and (2) the high quality factor of mechanical resonances and acoustic wave propagation as well as a reduction in resistive losses to increase energy efficiency and (3) innovative designs of grating structures allowing electro-acoustic coupling of the energy to unidirectional propagating waves. Combining this fundamentally new non-reciprocal concept with the well established field of Surface Acoustic Wave and Bulk Acoustic Wave filters and delay lines, a new generation of acoustic wave based integrated circuits will be developed. Furthermore, this approach provides novel signal processing functionalities such as performing time correlations and multipath equalizations directly at RF with almost no noise penalty, which are presently unavailable. These integrated circuit devices, once successfully made, will help the future wireless system to be more sensitive and have higher efficiency, yet with an extremely small form factor.
该提案利用了半导体行业开发的电磁设备所取得的进步,通过使用声波平台利用新的时间反转对称性破缺来开发比电磁设备更紧凑、更高效的创新设备。这些新型声学器件能够在指定方向上传送波和/或放大它们,而不会产生额外的噪声,同时还与现有声学器件兼容以形成声学“芯片”。拟议的创新研究结合了电气工程和机械工程的概念,为我们未来行业面临的重要问题开发新的解决方案。该混合研究计划通过强调下一代电磁设备所需的系统级品质因数和系统集成概念,为未来无线组件开发了一种全新的范例。这种方法需要传统上不同的电磁波和声波领域之间的跨学科相互作用,从而产生能够取得重大进步的混合团队。拟议的工作还包括对本科生和 K-12 学生的教育重点,重点是学生的教育体验,促进系统级混合工程概念。将向本科生介绍与该计划密切相关的射频工程应用。来自洛杉矶地区代表性不足的城市高中的更多学生将被纳入加州大学洛杉矶分校正在进行的夏季研究项目,该项目融合了系统级工程概念。这项研究中存在的潜在发现可以给无线通信和传感器技术带来一场新的革命。这一进步代表着射频前端的小型化程度达到了一个数量级,同时使整个系统受益于极小的外形尺寸和大幅降低的成本。 这些进步促进了未来自动驾驶汽车和环境保护所需的电磁传感器和设备的更广泛部署。敏感、抗干扰的射频前端还可以满足杂乱环境中无线通信的最终需求,因为干扰和干扰一直是许多无线通信场景中的主要挑战。通过参数调制打破声波传播的时间反演对称性,在声波平台上获得非互易性。所提出的努力将产生基于这一原理的新型声学设备,例如声学放大器、混频器和循环器,在显着减小尺寸的同时提供数量级的效率提高。这是通过利用 (1) 射频声波的慢速和小波长来减少传输线占地面积和 (2) 机械谐振和声波传播的高质量因数以及减少电阻损耗来实现的能源效率和(3)光栅结构的创新设计,允许能量与单向传播波的电声耦合。将这种全新的不可逆概念与成熟的表面声波和体声波滤波器和延迟线领域相结合,将开发出新一代基于声波的集成电路。此外,这种方法提供了新颖的信号处理功能,例如直接在射频处执行时间相关和多径均衡,几乎没有噪声损失,而这些功能目前尚不可用。这些集成电路器件一旦成功制造,将有助于未来的无线系统变得更加灵敏、效率更高,同时外形尺寸极小。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Coupling of Lamb Waves and Spin Waves in Multiferroic Heterostructures
多铁异质结构中兰姆波和自旋波的耦合
  • DOI:
    10.1109/jmems.2020.3017138
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Tiwari, Sidhant;Schneider, Joseph D.;Wintz, Sebastian;Arekapudi, Sri S.;Lenz, Kilian;Chavez, Andres;Lindner, Jurgen;Hellwig, Olav;Carman, Greg P.;Candler, Robert N.
  • 通讯作者:
    Candler, Robert N.
Underlayer effect on the soft magnetic, high frequency, and magnetostrictive properties of FeGa thin films
  • DOI:
    10.1063/5.0011873
  • 发表时间:
    2020-07-02
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Adrian Acosta;Kevin Fitzell;J. Schneider;Cunzheng Dong;Z. Yao;R. Sheil;Y. Wang;G. Carman;N.
  • 通讯作者:
    N.
Nonreciprocal wave propagation and parametric amplification of bulk elastic waves in nonlinear anisotropic materials
非线性各向异性材料中体弹性波的不可逆波传播和参量放大
  • DOI:
    10.1088/1367-2630/ab61d9
  • 发表时间:
    2020-02-04
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Mahsa Zakeri;S. Keller;Y. Wang;C. Lynch
  • 通讯作者:
    C. Lynch
Non-degenerate parametric mixing and Q-enhancement in ALN Lamb wave resonator
ALN 兰姆波谐振器中的非简并参数混合和 Q 增强
  • DOI:
    10.1063/5.0053818
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Lu, Ting;Schneider, Joseph D.;Tiwari, Sidhant;Zou, Xiating;Yeung, Lap K.;Candler, Robert N.;Carman, Gregory P.;Wang, Yuanxun Ethan
  • 通讯作者:
    Wang, Yuanxun Ethan
Frequency conversion through nonlinear mixing in acoustic waves
通过声波中的非线性混合进行频率转换
  • DOI:
    10.1063/5.0018074
  • 发表时间:
    2020-08-13
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    J. Schneider;Ting Lu;Sidhant Tiwari;Xiating Zou;A. Mal;R. C;ler;ler;Y. Wang;G. Carman
  • 通讯作者:
    G. Carman
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuanxun Wang其他文献

Microstructure and failure behavior of ultrasonic-assisted resistance spot welded AA6061/Ti6Al4V joints
超声辅助电阻点焊AA6061/Ti6Al4V接头的显微组织与失效行为
Exploring Halogen Bonds in 5-Hydroxytryptamine 2B Receptor-Ligand Interactions.
  • DOI:
    10.1021/acsmedchemlett.8b00300
  • 发表时间:
    2018-10-01
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Yu Zhou;Yuanxun Wang;Pengfei Li;Xi;Xiangbing Qi;Yunfei Du;Niu Huang
  • 通讯作者:
    Niu Huang
Welding quality evaluation of resistance spot welding based on a hybrid approach
基于混合方法的电阻点焊焊接质量评价
  • DOI:
    10.1007/s10845-020-01627-5
  • 发表时间:
    2020-07-23
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Dawei Zhao;M. Ivanov;Yuanxun Wang;Wenhao Du
  • 通讯作者:
    Wenhao Du
Study on the response to low-velocity impact of a composite plate improved by shape memory alloy
形状记忆合金改良复合板低速冲击响应研究
  • DOI:
    10.1007/s10338-007-0742-9
  • 发表时间:
    2007-12-01
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Ying Wu;Yongdong Wu;Yuanxun Wang;W. Zhong
  • 通讯作者:
    W. Zhong
Total synthesis of Sparstolonin B, a potent anti-inflammatory agent
  • DOI:
    10.1039/c4ra15948a
  • 发表时间:
    2015-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Yongqiang Wang;Chao Wang;Yuanxun Wang;Lijin Dong;Jian Sun
  • 通讯作者:
    Jian Sun

Yuanxun Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuanxun Wang', 18)}}的其他基金

Collaborative Research: SWIFT: Cognitive-IoV with Simultaneous Sensing and Communications via Dynamic RF Front End
合作研究:SWIFT:通过动态射频前端实现同步传感和通信的认知车联网
  • 批准号:
    2128570
  • 财政年份:
    2021
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT: Cognitive-IoV with Simultaneous Sensing and Communications via Dynamic RF Front End
合作研究:SWIFT:通过动态射频前端实现同步传感和通信的认知车联网
  • 批准号:
    2128570
  • 财政年份:
    2021
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI-2DARE and NewLAW Grantees Meeting Workshop, San Diego, October 17-19, 2018
EFRI-2DARE 和 NewLAW 受资助者会议研讨会,圣地亚哥,2018 年 10 月 17 日至 19 日
  • 批准号:
    1849079
  • 财政年份:
    2018
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Workshop: Recent Advances and Future Research Directions in RF Technologies from MHz to THz; Honolulu, Hawaii, June 8th, 2017.
研讨会:从 MHz 到 THz 射频技术的最新进展和未来研究方向;
  • 批准号:
    1737435
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Low Noise, Tunable Non-Reciprocal RF Front-Ends Based on Time-Varying Transmission Lines (TVTL)
基于时变传输线 (TVTL) 的低噪声、可调谐非互易 RF 前端
  • 批准号:
    1610594
  • 财政年份:
    2016
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Closely Coupled Antenna Systems for Wireless Communications
用于无线通信的紧耦合天线系统
  • 批准号:
    0725929
  • 财政年份:
    2007
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant

相似国自然基金

溶菌酶LYZ介导内皮细胞衰老促进高盐高血压的机制及祛瘀生新法的干预
  • 批准号:
    82305072
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
祛瘀生新法通过PAR-4、FXI信号转导的抗血栓机制研究
  • 批准号:
    82174280
  • 批准年份:
    2021
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
从“肠道菌群-宿主”共代谢角度探讨祛瘀生新法调控溃疡性结肠炎免疫状态的机制
  • 批准号:
    81874468
  • 批准年份:
    2018
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
基于RIP1-RIP3/DRP1/Mit信号通路调控NLRP3炎性小体在溃疡性结肠炎中的作用探讨祛瘀生新方的调控机制
  • 批准号:
    81704078
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于肠道宏病毒组学研究祛瘀生新法调控溃疡性结肠炎的机制
  • 批准号:
    81603633
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EFRI NewLAW: Non-Reciprocal Wave Propagation Devices by Fermionic Emulation and Exceptional Point Physics
EFRI NewLAW:通过费米子仿真和异常点物理实现非互易波传播装置
  • 批准号:
    1741694
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
EFRI NewLAW: Non-reciprocal, topologically protected propagation using atomically thin materials for nanoscale devices
EFRI NewLAW:使用原子级薄材料用于纳米级设备的非互易、拓扑保护传播
  • 批准号:
    1741691
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Non-reciprocity in Acoustic Systems with Nonlinear Hierarchical Internal Structure and Asymmetry
EFRI NewLAW:具有非线性分层内部结构和不对称性的声学系统中的非互易性
  • 批准号:
    1741565
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
GOALI: EFRI NewLaw: Non-reciprocal effects and Anderson localization of acoustic and elastic waves in periodic structures with broken P-symmetry of the unit cell
目标:EFRI 新定律:单胞 P 对称性破缺的周期性结构中声波和弹性波的非互易效应和安德森局域化
  • 批准号:
    1741677
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Dynamic Elastic media: Passive and Active non-Reciprocal Theory, Experiment and Design
EFRI NewLAW:动态弹性介质:被动和主动非互易理论、实验和设计
  • 批准号:
    1641078
  • 财政年份:
    2016
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了