CAREER: Visualizing Emergent Electronic States Near Quantum Phase Transitions

职业:可视化接近量子相变的新兴电子态

基本信息

  • 批准号:
    1654482
  • 负责人:
  • 金额:
    $ 53.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Non-technical abstract:Unconventional superconductivity is a fascinating state of quantum matter. Its absolute zero resistivity promises the future of clean energy transmission and magnetically-levitated transportation without friction. Superconductivity has been challenging the scientific community for three decades. Unlike in simple metals, where electrons move freely, in unconventional superconductors they are mostly confined in two dimensional planes. This restriction, together with their mutual stronger interaction, create a "traffic jam" of electrons. Externally, altering the number of the electrons leads to various novel states of matter, such as superconductivity and exotic electronic patterns. It remains unclear whether these different electronic states coexist or compete. Using a scanning tunneling microscope, an experimental technique that locally visualizes the electrons, and resonant x-ray scattering, an experimental probe of global electronic states, the research team aims to investigate how these electronic states emerge in various correlated material systems. An important question to be answered is how external tuning can locally destroy one ordered state and enhance another. The project is designed to advance our fundamental understanding of superconductivity and provide means for enhancing their transition temperatures. Educational goals result from this research through outreach activities utilizing the principle investigator's research tools that will amaze and inspire K-12 students with live-demonstrations and hands-on experimentations as well as provide explicit education and training of undergraduate and graduate students.Technical abstract:Identifying broken symmetry states near quantum phase transitions remains a key objective of strongly correlated electron systems. A challenging goal is the microscopic understanding of emergent superconductivity. Central to this challenge is the local coexistence of various electronic states, such as nematic, charge, and orbital ordering that preempt, promote, or are intertwined with superconductivity. Probing and visualizing the microscopic origin of these ordered states and deliberately tuning them is the key objective towards understanding and controlling superconductivity. The research program aims to visualize and tune broken symmetry states in d- and f-correlated electron systems near quantum phase transitions. The research team uses a new approach that enables to uniaxially strain these material systems and visualize their response in the electronic density of states through spectroscopic imaging with the scanning tunneling microscope and resonant x-ray scattering. The research program's goal is to discover and understand novel phases of matter in correlated material systems that may promote, enhance, or twist superconductivity. Natural broader impacts result from this research through outreach activities that aim to amaze and inspire K-12 students. Some of these activities involve live demonstrations and hands-on experimentations, such as cryogenic cooling, superconducting levitation and transportation to be performed at the Greater Binghamton Soccer Dome, the Kopernik Observatory & Science Center, and local elementary schools. A graduate level course on experimental techniques in condensed matter is developed by the principle investigator that provides explicit education and training for undergraduate and graduate students.
非技术摘要:非常规超导性是量子问题的迷人状态。它的绝对零电阻率有望在没有摩擦的情况下清洁能量传播和磁性滑动​​运输的未来。超导性一直在挑战科学界的三十年。与简单的金属不同,电子在非常规超导体中自由移动,它们主要限制在二维平面上。这种限制及其相互强烈的相互作用创造了电子的“交通拥堵”。在外部,改变电子的数量会导致物质的各种新状态,例如超导性和奇异电子模式。尚不清楚这些不同的电子状态是共存还是竞争。研究小组使用扫描隧道显微镜,一种局部可视化电子的实验技术,以及谐振X射线散射,这是全球电子状态的实验探针,旨在研究这些电子状态如何在各种相关材料系统中出现。要回答的一个重要问题是,外部调整如何在本地销毁一个有序状态并增强另一个有序状态。该项目旨在促进我们对超导性的基本理解,并提供增强其过渡温度的手段。 Educational goals result from this research through outreach activities utilizing the principle investigator's research tools that will amaze and inspire K-12 students with live-demonstrations and hands-on experimentations as well as provide explicit education and training of undergraduate and graduate students.Technical abstract:Identifying broken symmetry states near quantum phase transitions remains a key objective of strongly correlated electron systems.一个具有挑战性的目标是对新兴超导性的微观理解。这一挑战的核心是各种电子状态的局部共存,例如列表,电荷和轨道订购,它们会与超导性相互交织。探测和可视化这些有序状态的显微镜起源并故意调整它们是理解和控制超导性的关键目标。该研究计划的目的是在量子相变附近可视化和调整D型和F与相关的电子系统中的破碎对称态。研究团队使用一种新方法,使这些材料系统能够通过扫描隧道显微镜和谐振X射线散射通过光谱成像来单次扭曲这些材料系统并在状态的电子密度中可视化它们的响应。研究计划的目标是在相关的材料系统中发现和理解物质的新阶段,这些系统可能会促进,增强或扭曲超导性。这项研究通过推广活动而产生的自然更广泛的影响,旨在使K-12学生感到惊讶和激发。其中一些活动涉及现场演示和动手实验,例如在大宾厄姆顿足球穹顶,科佩尔尼克天文台和科学中心以及当地小学等进行低温冷却,超导悬浮和运输。凝结物质实验技术的研究生级课程是由主要研究人员开发的,该研究人员为本科生和研究生提供了明确的教育和培训。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Surface state evolution induced by magnetic order in axion insulator candidate EuIn2As2
  • DOI:
    10.1103/physrevb.106.125156
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mingda Gong;Divyanshi Sar;J. Friedman;D. Kaczorowski;S. Razek;Wei‐Cheng Lee;P. Aynajian
  • 通讯作者:
    Mingda Gong;Divyanshi Sar;J. Friedman;D. Kaczorowski;S. Razek;Wei‐Cheng Lee;P. Aynajian
Emergent charge order near the doping-induced Mott-insulating quantum phase transition in Sr3Ru2O7
  • DOI:
    10.1038/s42005-019-0138-4
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Justin Leshen;Mariam Kavai;I. Giannakis;Y. Kaneko;Y. Tokura;S. Mukherjee;Wei‐Cheng Lee;P. Aynajian
  • 通讯作者:
    Justin Leshen;Mariam Kavai;I. Giannakis;Y. Kaneko;Y. Tokura;S. Mukherjee;Wei‐Cheng Lee;P. Aynajian
Coexisting Kondo hybridization and itinerant f-electron ferromagnetism in UGe2
  • DOI:
    10.1103/physrevresearch.4.l022030
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. Giannakis;Divyanshi Sar;J. Friedman;Chang‐Jong Kang;M. Janoschek;P. Das;E. Bauer;G. Kotliar;P. Aynajian
  • 通讯作者:
    I. Giannakis;Divyanshi Sar;J. Friedman;Chang‐Jong Kang;M. Janoschek;P. Das;E. Bauer;G. Kotliar;P. Aynajian
Physicists hunt for room-temperature superconductors that could revolutionize the world’s energy system
物理学家寻找可以彻底改变世界能源系统的室温超导体
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pegor Aynajian
  • 通讯作者:
    Pegor Aynajian
Orbital-selective Kondo lattice and enigmatic f electrons emerging from inside the antiferromagnetic phase of a heavy fermion
  • DOI:
    10.1126/sciadv.aaw9061
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Giannakis, Ioannis;Leshen, Justin;Aynajian, Pegor
  • 通讯作者:
    Aynajian, Pegor
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pegor Aynajian其他文献

Pegor Aynajian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于荧光共振能量转移机理构建多肽荧光探针用于可视化Zn2+结合SQSTM1/p62调节自噬在前列腺癌去势耐受中的作用机制
  • 批准号:
    82303568
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
调控线粒体钙失稳纳米信使联合自噬抑制用于乳腺癌的信号级联可视化治疗研究
  • 批准号:
    82302210
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
MR可视化仿生纳米酶在缺血性脑卒中微循环改善中的应用基础研究
  • 批准号:
    82302176
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
同步辐射技术驱动的晶态孔界面气体吸附动态可视化
  • 批准号:
    22320102003
  • 批准年份:
    2023
  • 资助金额:
    216 万元
  • 项目类别:
    国际(地区)合作与交流项目
小鼠病理性心室重构的磷酸二酯酶PDE10A靶向性PET可视化研究
  • 批准号:
    82300567
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Visualizing Novel Electronic Orders in Bilayer Graphene Systems
可视化双层石墨烯系统中的新型电子顺序
  • 批准号:
    2312311
  • 财政年份:
    2023
  • 资助金额:
    $ 53.16万
  • 项目类别:
    Continuing Grant
Visualizing Janowska: Creating a Digital Architectural Model of a Nazi Concentration Camp
可视化 Janowska:创建纳粹集中营的数字建筑模型
  • 批准号:
    AH/X00774X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 53.16万
  • 项目类别:
    Fellowship
Development of 320x256 pixel metamaterial infrared image sensors for visualizing invisible gases
开发用于可视化不可见气体的 320x256 像素超材料红外图像传感器
  • 批准号:
    23H01883
  • 财政年份:
    2023
  • 资助金额:
    $ 53.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Ligand-tethered Cu-responsive protein labeling chemical tool for visualizing Cu-release at synaptic cleft
开发配体束缚的铜响应蛋白标记化学工具,用于可视化突触间隙铜的释放
  • 批准号:
    22KJ1889
  • 财政年份:
    2023
  • 资助金额:
    $ 53.16万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Visualizing Photon Induced Dynamics in Polyatomic Molecules using Femtosecond Pump-Probe Laser Pulses
使用飞秒泵浦探测激光脉冲可视化多原子分子中的光子诱发动力学
  • 批准号:
    2306982
  • 财政年份:
    2023
  • 资助金额:
    $ 53.16万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了