CAREER: Fundamental Electronic Device Performance and Reliability Investigation on Chalcogenide- and Oxide-based N- and P-type Materials for Large Area/Flexible Electronics

职业:用于大面积/柔性电子产品的硫族化物和氧化物基 N 型和 P 型材料的基础电子器件性能和可靠性研究

基本信息

  • 批准号:
    1653343
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-03-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Large area/flexible electronics presents new opportunities for applications benefiting society, such as low- cost, flexible and self-powered sensors, wearable, and even biocompatible electronics. These systems may include "smart" medical bandages that monitor the healing of wounds and medical triage patches that monitor vital signs. Also, light-weight and rugged flexible decals are a potential application for inventory tracking, pollution monitoring, structural reliability of buildings/bridges in urban areas, etc. Currently, a typical fabrication approach to enable circuitry for these applications will use organic materials in a complex integration scheme with inorganic materials "hybrid approach" that will be more costly compared to the proposed work. In addition, a serious limitation of the hybrid approach is device and circuit performance limitations due to exposure of organics to the ambient. To enable high performance systems applications for large area electronics such as "smart" bio monitoring patches, flexible sensors, RFIDs, and microcontrollers, the incorporation of low cost, non-silicon thin-film transistor materials compatible with mechanically flexible properties is essential. Moreover, the flexible application requires substrates processed at relatively low temperatures ( 180°C) compared to conventional silicon-based chip manufacturing. To address this performance gap at low cost, this research proposes exploring an entirely inorganic, non-hybrid semiconductor technology using chalcogenides (sulfur- and tellurium-based materials) and oxides (zinc oxide-based, nickel oxide and tin oxide materials). Using these semiconducting materials will result in a revolution of large-area/flexible electronics by enabling straightforward integration of multiple components (i.e., energy storage/harvesting, displays, and sensors) on a single substrate. Furthermore, they will have a resounding impact on the Internet of Things, medical, defense, and sensors by enabling technologies where it may not be practical and cost effective for silicon. Finally, the education/outreach objectives include engaging with middle school STEM educators for on-campus research in the PI"s lab and incorporating the experience into innovative curriculum plans to take back to their students. In addition, there will be implementation of "units of learning" that incorporate large-area/flex technology into advanced-level courses while also providing undergraduate research opportunities.The objective of this proposal is to fundamentally explore the use of inorganic, low temperature ( 180ºC) chalcogenide- and oxide-based n-type and p-type thin-film semiconductors for low-cost, large-area/flex- compatible devices and circuits. The research plan consists of four (4) phases: (I) materials evaluation; (II) device fabrication; (III) device characterization; and (IV) device simulation/modeling. Using physical and electrical characterization along with modeling/simulation, a comprehensive investigation will provide fundamental device performance and reliability understanding. This work will provide the opportunity to have Cd- and Pb-free materials for p- and n-type semiconductors with high carrier mobility and electrical stability for implantable or wearable electronics. Furthermore, the demonstration of large-area/flex- compatible p/n junctions, junction field effect transistors, and thin-film transistors will truly take large- area/flex processing to new heights and permit complementary circuit capabilities, such as thin film amplifiers and logic circuitry, that have not been demonstrated using appropriate processing conditions (i.e., low temp) for integration into sensors, smart bandages, detectors, RFIDs, etc. This work addresses current challenges in large-area/flex-compatible circuitry where all-inorganic, n- and p-type semiconductor devices, and circuits are vital because an organic-only or a partially organic hybrid approach has more pronounced long-term degradation of organic-based devices. Therefore, inorganic materials and devices are preferred in order to create the needed circuitry. Using these semiconducting materials will result in a revolution of large-area and flexible electronics by enabling straightforward integration of multiple components such as energy storage/harvesting, displays, and sensors on a single substrate. Furthermore, they will have a resounding impact on the Internet of Things, medical, defense, and sensors by enabling technologies where it may not be practical and cost effective for silicon.
大面积/柔性电子产品为造福社会的应用提供了新的机会,例如低成本、灵活且自供电的传感器、可穿戴甚至生物相容的电子产品,这些系统可能包括监测伤口愈合和医疗的“智能”医用绷带。此外,轻质且坚固的柔性贴花还可用于库存跟踪、污染监测、城市地区建筑物/桥梁的结构可靠性等。目前,一种典型的制造方法可以实现这些贴花的电路。应用程序将使用与所提出的工作相比,有机材料与无机材料的复杂集成方案“混合方法”成本更高。此外,混合方法的一个严重限制是由于有机物暴露在环境中而导致的器件和电路性能限制。为了实现大面积电子产品的高性能系统应用,例如“智能”生物监测贴片、柔性传感器、RFID 和微控制器,必须采用与机械柔性特性兼容的低成本、非硅薄膜晶体管材料。与传统硅基芯片制造相比,柔性应用需要在相对较低的温度(180°C)下处理基板。为了以低成本解决这一性能差距,本研究建议探索一种使用硫属化物(硫)的完全无机、非混合半导体技术。 - 和碲基材料)和氧化物(氧化锌基、氧化镍和氧化锡材料)的使用将导致大面积/柔性的革命。通过在单个基板上直接集成多个组件(即能量存储/收集、显示器和传感器),它们将通过实现技术对物联网、医疗、国防和传感器产生巨大影响。最后,教育/推广目标包括让中学 STEM 教育工作者在 PI 实验室进行校园研究,并将经验纳入创新课程计划中,以回馈给学生。 。此外,将实施“学习单元”,将大面积/柔性技术纳入高级课程,同时还提供本科生研究机会。该提案的目标是从根本上探索无机低温(180°C)硫属化物的使用- 用于低成本、大面积/柔性兼容器件和电路的氧化物基 n 型和 p 型薄膜半导体 该研究计划包括四 (4) 个阶段:(I) 材料评估; )器件制造;(III) 器件表征;(IV) 器件仿真/建模 使用物理和电气表征以及建模/仿真,全面的研究将提供对 Cd 的基本性能和可靠性的了解。用于 p 型和 n 型半导体的无铅材料,具有高载流子迁移率和电稳定性,适用于可植入或可穿戴电子产品。此外,还展示了大面积/柔性兼容 p/n 结、结型场效应晶体管和薄膜晶体管将真正将大面积/柔性处理提升到新的高度,并允许补充电路功能,例如薄膜放大器和逻辑电路,这些功能尚未使用适当的处理条件(即低温)来集成到传感器、智能绷带中进行证明这项工作解决了大面积/柔性兼容电路中当前的挑战,其中全无机、n 型和 p 型半导体器件和电路至关重要,因为纯有机或部分有机混合方法因此,为了创建所需的电路,有机材料和器件会出现更明显的长期退化,使用这些半导体材料将通过实现直接集成而带来大面积和柔性电子设备的革命。此外,它们还将通过实现可能不切实际且具有成本效益的技术,对物联网、医疗、国防和传感器产生巨大影响。对于硅。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Positive Bias Instability in ZnO TFTs with Al 2 O 3 Gate Dielectric
具有 Al 2 O 3 栅极电介质的 ZnO TFT 的正偏压不稳定性
Introduction of a Reset MOSFET to Mitigate the Influence of Ionic Movement in Perovskite MOSFET Photodetector Measurements
Electrical characterization of process induced effects on non-silicon devices
非硅器件工艺诱发效应的电气特性
  • DOI:
    10.1109/icicdt.2018.8399784
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Young, Chadwin D.;Bolshakov, Pavel;Rodriguez-Davila, Rodolfo A.;Zhao, Peng;Khosravi, Ava;Mejia, Israel;Quevedo-Lopez, Manuel;Hinkle, Christopher L.;Wallace, Robert M.
  • 通讯作者:
    Wallace, Robert M.
Schottky Barrier Height Tuning on Platinum-gated ZnO Metal-Semiconductor Field Effect Transistors by In-Situ Surface Modification
通过原位表面改性对铂栅 ZnO 金属半导体场效应晶体管进行肖特基势垒高度调节
Low temperature, highly stable ZnO thin-film transistors
  • DOI:
    10.1016/j.mee.2023.112063
  • 发表时间:
    2023-07-14
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Rodriguez-Davila,Rodolfo A.;Chapman,Richard A.;Quevedo-Lopez,Manuel A.
  • 通讯作者:
    Quevedo-Lopez,Manuel A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chadwin Young其他文献

Chadwin Young的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chadwin Young', 18)}}的其他基金

REU Site: Electronic Materials Evaluation Research for Greater Exposure to Future Technology Careers (EMERGE)
REU 网站:电子材料评估研究,以更好地接触未来技术职业 (EMERGE)
  • 批准号:
    2150281
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
US-Ireland R&D Partnership: Ga2O3: Understanding Growth, Interfaces and Defects to enable next generation Electronics (GUIDE)
美国-爱尔兰 R
  • 批准号:
    2154535
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

利用时间分辨电子顺磁共振光谱对电子给受体二元化合物基本光物理过程的研究
  • 批准号:
    21911530095
  • 批准年份:
    2019
  • 资助金额:
    15 万元
  • 项目类别:
    国际(地区)合作与交流项目
纳米结构扫描电子显微俯视图像的三维重建基本模型及算法研究
  • 批准号:
    61604172
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
强太赫兹激光和强磁场作用下二维电子气系统的基本磁光电物理特性研究
  • 批准号:
    11574319
  • 批准年份:
    2015
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
多肽电子捕获裂解质谱中三个基本问题的研究
  • 批准号:
    21205071
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
新型半导体光电子材料Fe1-xOsxSi2的制备与基本特性研究
  • 批准号:
    50702019
  • 批准年份:
    2007
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Classification of Stroke Etiology Using Advanced Computational Approaches
使用先进计算方法对中风病因进行分类
  • 批准号:
    10371559
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
Classification of Stroke Etiology Using Advanced Computational Approaches
使用先进计算方法对中风病因进行分类
  • 批准号:
    10542760
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
CAREER: Revealing the Fundamental Mechanisms Behind the Dislocation-Induced Electronic States in III-V Semiconductors
职业:揭示 III-V 族半导体中位错诱发电子态背后的基本机制
  • 批准号:
    2047308
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Center for Clinical and Translational Science
临床和转化科学中心
  • 批准号:
    9926327
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
Center for Clinical and Translational Science
临床和转化科学中心
  • 批准号:
    10643722
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了