CAREER: Hardware Accelerated Bayesian Inference via Approximate Message Passing: A Bottom-Up Approach
职业:通过近似消息传递进行硬件加速贝叶斯推理:自下而上的方法
基本信息
- 批准号:1652065
- 负责人:
- 金额:$ 60.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-02-15 至 2021-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Bayesian inference is a powerful method for extracting statistical information from noisy or corrupted measurements. A growing number of applications relies on real-time (time-critical) Bayesian inference, mainly in the fields of wireless communications and imaging. While the most sophisticated algorithms have been designed for time-insensitive tasks, real-time applications typically rely on simplistic methods that prevent the use of accurate system and signal models. This disparity between theory and practice is mainly caused by the fast progress on the theory and algorithm side and the limited theoretical expertise of most hardware designers. The proposed research aims to bridge the ever-growing gap between theory and practice using a holistic approach that spans the circuit design, algorithm, and theory levels. In addition to improving the efficiency and quality of Bayesian inference in real-time applications, the project will advance future wireless systems through collaboration with the telecommunications industry, along with the development of new tools that are accessible to experts on all levels. The interdisciplinary nature of this project is also the unifying theme across the educational outreach activities. The PI will lead hands-on design sessions for underrepresented minority high-school students and will supervise undergraduates from South America with the goal of increasing participation in interdisciplinary research.The project builds upon approximate message passing (AMP), a powerful statistical framework that facilitates the design of efficient algorithms and is equipped with analytical tools for characterizing inference complexity and quality. Unfortunately, the theory behind AMP makes it inaccessible to most circuit designers; similarly, the constraints of digital circuit design are generally unknown to algorithm designers and theorists. This project resolves the dichotomy by pursuing a bottom-up research approach in which hardware limitations drive efforts on the algorithm and theory levels. This unconventional research paradigm requires a joint consideration of the major challenges on all levels. In particular, the project evaluates hardware approximations that are key for digital circuit designs, investigates algorithm transforms that enable more efficient architectures, and analyzes the impacts of the proposed circuit-level and algorithm-level optimizations on the inference complexity and quality.
贝叶斯推断是一种从嘈杂或损坏的测量结果中提取统计信息的有力方法。越来越多的应用依赖于实时(时间至关时间)贝叶斯推断,主要在无线通信和成像领域。虽然最复杂的算法是为时间不敏感的任务而设计的,但实时应用程序通常依靠简单的方法来阻止使用精确的系统和信号模型。理论与实践之间的这种差异主要是由理论和算法方面的快速进步以及大多数硬件设计师的理论专业知识有限引起的。拟议的研究旨在使用跨越电路设计,算法和理论水平的整体方法来弥合理论与实践之间不断增长的差距。除了提高贝叶斯推断在实时应用程序中的效率和质量外,该项目还将通过与电信行业的协作来推动未来的无线系统,以及开发各个级别的专家都可以访问的新工具。该项目的跨学科性质也是教育外展活动中的统一主题。 The PI will lead hands-on design sessions for underrepresented minority high-school students and will supervise undergraduates from South America with the goal of increasing participation in interdisciplinary research.The project builds upon approximate message passing (AMP), a powerful statistical framework that facilitates the design of efficient algorithms and is equipped with analytical tools for characterizing inference complexity and quality.不幸的是,AMP背后的理论使大多数电路设计师无法访问。同样,算法设计师和理论家通常未知数字电路设计的限制。该项目通过采用自下而上的研究方法来解决二分法,其中硬件限制推动了算法和理论水平的努力。这种非常规的研究范式需要在各个层面上共同考虑主要挑战。特别是,该项目评估了数字电路设计关键的硬件近似值,研究算法会改变能够更有效的体系结构,并分析拟议的电路级别和算法级优化对推理复杂性和质量的影响。
项目成果
期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
BEACHES: Beamspace Channel Estimation for Multi-Antenna mmWave Systems and Beyond
- DOI:10.1109/spawc.2019.8815576
- 发表时间:2019-07
- 期刊:
- 影响因子:0
- 作者:Ramina Ghods;Alexandra Gallyas-Sanhueza;S. Mirfarshbafan;Christoph Studer
- 通讯作者:Ramina Ghods;Alexandra Gallyas-Sanhueza;S. Mirfarshbafan;Christoph Studer
Linear Spectral Estimators and an Application to Phase Retrieval
线性谱估计器和相位检索的应用
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Ghods, Ramina;Lan, Andrew;Goldstein, Tom;Studer, Christoph
- 通讯作者:Studer, Christoph
Sparsity-Adaptive Beamspace Channel Estimation for 1-Bit mmWave Massive MIMO Systems
- DOI:10.1109/spawc48557.2020.9154213
- 发表时间:2020-01-01
- 期刊:
- 影响因子:0
- 作者:Gallyas-Sanhueza, Alexandra;Mirfarshbafan, Seyed Hadi;Studer, Christoph
- 通讯作者:Studer, Christoph
Non-Uniform Wavelet Sampling for RF Analog-to-Information Conversion
- DOI:10.1109/tcsi.2017.2729779
- 发表时间:2018-02-01
- 期刊:
- 影响因子:5.1
- 作者:Pelissier, Michael;Studer, Christoph
- 通讯作者:Studer, Christoph
Optimally-tuned nonparametric linear equalization for massive MU-MIMO systems
针对大规模 MU-MIMO 系统的优化调整非参数线性均衡
- DOI:10.1109/isit.2017.8006903
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Ghods, Ramina;Jeon, Charles;Mirza, Gulnar;Maleki, Arian;Studer, Christoph
- 通讯作者:Studer, Christoph
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christoph Studer其他文献
Optimal ranking of test items using the Rasch model
使用 Rasch 模型对测试项目进行优化排序
- DOI:
10.1109/allerton.2016.7852268 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Divyanshu Vats;Andrew S. Lan;Christoph Studer;Richard Baraniuk - 通讯作者:
Richard Baraniuk
PAR-aware multi-user precoder for the large-scale MIMO-OFDM downlink
用于大规模 MIMO-OFDM 下行链路的 PAR 感知多用户预编码器
- DOI:
10.1109/iswcs.2012.6328479 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Christoph Studer;E. Larsson - 通讯作者:
E. Larsson
Joint Sparse Factor Analysis and Topic Modeling for Learning Analytics ( Poster )
用于学习分析的联合稀疏因子分析和主题建模(海报)
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Andrew S. Lan;Andrew E. Waters;Christoph Studer;Richard Baraniuk - 通讯作者:
Richard Baraniuk
Nonlinear Phase-Quantized Constant-Envelope Precoding for Massive MU-MIMO-OFDM
大规模 MU-MIMO-OFDM 的非线性相位量化恒定包络预编码
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Sven Jacobsson;Oscar Castañeda;Charles Jeon;G. Durisi;Christoph Studer - 通讯作者:
Christoph Studer
Tail behavior of sphere-decoding complexity in random lattices
随机格中球体解码复杂度的尾部行为
- DOI:
10.1109/isit.2009.5205679 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
D. Seethaler;J. Jaldén;Christoph Studer;H. Bölcskei - 通讯作者:
H. Bölcskei
Christoph Studer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christoph Studer', 18)}}的其他基金
SpecEES: Spatio-Spectral Sensing with Wideband Feature Extraction Arrays
SpecEES:利用宽带特征提取阵列进行空间光谱传感
- 批准号:
1824379 - 财政年份:2018
- 资助金额:
$ 60.67万 - 项目类别:
Standard Grant
NeTS: Small: Collaborative Research: BRICK: Breaking the I/O and Computation Bottlenecks in Massive MIMO Base Stations
NeTS:小型:协作研究:BRICK:突破大规模 MIMO 基站的 I/O 和计算瓶颈
- 批准号:
1717559 - 财政年份:2017
- 资助金额:
$ 60.67万 - 项目类别:
Standard Grant
AitF: EXPL: Collaborative Research: Approximate Discrete Programming for Real-Time Systems
AitF:EXPL:协作研究:实时系统的近似离散编程
- 批准号:
1535897 - 财政年份:2015
- 资助金额:
$ 60.67万 - 项目类别:
Standard Grant
Collaborative Research: BAMM: Baseband Accelerators for Massive Multiple-Input Multiple-Output (MIMO) Technology
合作研究:BAMM:大规模多输入多输出 (MIMO) 技术的基带加速器
- 批准号:
1408006 - 财政年份:2014
- 资助金额:
$ 60.67万 - 项目类别:
Standard Grant
相似国自然基金
基于任意精度计算架构的量子信息处理算法硬件加速技术研究
- 批准号:62304037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多态边缘视频分析加速器的软硬件协同设计与实现
- 批准号:62302348
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向同态加密软硬件加速的图组合优化方法研究
- 批准号:62374146
- 批准年份:2023
- 资助金额:55.00 万元
- 项目类别:面上项目
基于动态稀疏和硬件感知的模型压缩与加速研究
- 批准号:62306312
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于数字存算一体的图卷积神经网络硬件加速研究
- 批准号:62204003
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Drag Prediction over Rough Surfaces using Hardware-Accelerated Simulations
使用硬件加速模拟对粗糙表面进行阻力预测
- 批准号:
DE230100754 - 财政年份:2024
- 资助金额:
$ 60.67万 - 项目类别:
Discovery Early Career Researcher Award
CAREER: Reliable and Accelerated Deep Neural Networks via Co-Design of Hardware and Algorithms
职业:通过硬件和算法的协同设计实现可靠且加速的深度神经网络
- 批准号:
2340516 - 财政年份:2024
- 资助金额:
$ 60.67万 - 项目类别:
Continuing Grant
High-Performance Hardware-Accelerated Private Computation
高性能硬件加速私有计算
- 批准号:
RGPIN-2020-05807 - 财政年份:2022
- 资助金额:
$ 60.67万 - 项目类别:
Discovery Grants Program - Individual
Hardware-Accelerated Implementation of a Neural Pathway Classifier on Ultra-low-power FPGA
在超低功耗 FPGA 上硬件加速实现神经通路分类器
- 批准号:
572677-2022 - 财政年份:2022
- 资助金额:
$ 60.67万 - 项目类别:
University Undergraduate Student Research Awards
Network-on-Chip Architectures in Hardware-Accelerated Application-Specific Integrated Circuits
硬件加速专用集成电路中的片上网络架构
- 批准号:
566266-2021 - 财政年份:2021
- 资助金额:
$ 60.67万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's