EAGER: Collaborative: Algorithmic Framework for Anomaly Detection in Interdependent Networks
EAGER:协作:相互依赖网络中异常检测的算法框架
基本信息
- 批准号:1646890
- 负责人:
- 金额:$ 9.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modern critical infrastructure relies on successful interdependent function among many different types of networks. For example, the Internet depends on access to the power grid, which in turn depends on the power-grid communication network and the energy production network. For this reason, network science researchers have begun examining the robustness of critical infrastructure as a network of networks, or a multilayer network. Research in network anomaly detection systems has focused on single network structures (specifically, the Internet as a single network). Among these methods, some promising detection algorithms rely on decentralized and distributed coordination among many participants, improving meaningfully over results from independent parallel and centralized algorithms. The project involves rigorous analysis of the different challenges and opportunities for anomaly detection posed by multilayer networks relative to single network structures, with a particular focus on how cross-layer information can be effectively used to improve both efficiency and detection as well as how cross-layer threats can create vulnerabilities. The project develops a general framework that can be used in multiple applications to detect large-scale threats to information flow for enhanced security. This has the potential for significant benefit to society through its contribution to enhanced resiliency in the nation's cyber infrastructure and other interdependent critical infrastructure such as the power grid. The combination of concepts and ideas from the cybersecurity community with the network science community will help researchers in both fields to better understand the realistic problems and be aware of each other's problems, results, and techniques.
现代关键基础架构依赖于许多不同类型的网络之间的成功相互依存功能。例如,互联网取决于对电网的访问,这又取决于电网通信网络和能源生产网络。因此,网络科学研究人员已经开始研究关键基础架构作为网络或多层网络的鲁棒性。网络异常检测系统的研究集中在单个网络结构上(特别是Internet作为单个网络)。在这些方法中,一些有希望的检测算法依赖于许多参与者的分散和分布配位,从而有意义地改善了独立平行和集中式算法的结果。该项目涉及对多层网络相对于单个网络结构提出的不同挑战和机遇的严格分析,并特别关注如何有效地使用跨层信息来提高效率和检测以及跨层威胁如何创造脆弱性。该项目开发了一个通用框架,可用于多个应用程序中,以检测对信息流的大规模威胁,以增强安全性。通过贡献其对国家网络基础设施的弹性和其他相互依存的批判基础设施(例如电网)的贡献,这可能会给社会带来重大利益。网络安全社区与网络科学界的概念和思想的结合将帮助两个领域的研究人员更好地了解现实的问题,并意识到彼此的问题,结果和技术。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Anomaly detection through information sharing under different topologies
通过不同拓扑下的信息共享进行异常检测
- DOI:10.1186/s13635-017-0056-5
- 发表时间:2017
- 期刊:
- 影响因子:3.6
- 作者:Gallos, Lazaros K.;Korczyński, Maciej;Fefferman, Nina H.
- 通讯作者:Fefferman, Nina H.
Propinquity drives the emergence of network structure and density
- DOI:10.1073/pnas.1900219116
- 发表时间:2019-09
- 期刊:
- 影响因子:0
- 作者:L. Gallos;S. Havlin;H. Stanley;N. Fefferman
- 通讯作者:L. Gallos;S. Havlin;H. Stanley;N. Fefferman
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nina Fefferman其他文献
Vital rate sensitivity analysis as a tool for assessing management actions for the desert tortoise
- DOI:
10.1016/j.biocon.2009.06.025 - 发表时间:
2009-11-01 - 期刊:
- 影响因子:
- 作者:
J. Michael Reed;Nina Fefferman;Roy C. Averill-Murray - 通讯作者:
Roy C. Averill-Murray
DialectDecoder: Human/machine teaming for bird song classification and anomaly detection
DialectDecoder:人机协作进行鸟鸣分类和异常检测
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:5.1
- 作者:
Brittany Story;Patrick Gillespie;Graham Derryberry;Elizabeth Derryberry;Nina Fefferman;Vasileios Maroulas - 通讯作者:
Vasileios Maroulas
Nina Fefferman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nina Fefferman', 18)}}的其他基金
PIPP Phase I: Predicting Emergence in Multidisciplinary Pandemic Tipping-points (PREEMPT)
PIPP 第一阶段:预测多学科流行病临界点的出现 (PREEMPT)
- 批准号:
2200140 - 财政年份:2022
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Collaborative Research: A Workshop on Pre-emergence and the Predictions of Rare Events in Multiscale, Complex, Dynamical Systems
协作研究:多尺度、复杂、动态系统中出现前和罕见事件的预测研讨会
- 批准号:
2114651 - 财政年份:2021
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
RAPID: Modeling the Coupled Social and Epidemiological Networks that Determine the Success of Behavioral Interventions on Limiting Spread of COVID-19
RAPID:对耦合的社会和流行病学网络进行建模,该网络决定限制 COVID-19 传播的行为干预措施是否成功
- 批准号:
2028710 - 财政年份:2020
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
RAPID: Modeling Zika Control Effectiveness with Feedback in Risk Perception and Associated Demand across Scales of Intervention
RAPID:通过风险感知反馈和跨干预规模的相关需求来建模寨卡控制有效性
- 批准号:
1640951 - 财政年份:2016
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Learning about Infectious Diseases through Online Participation in a Virtual Epidemic
RAPID:协作研究:通过在线参与虚拟流行病来了解传染病
- 批准号:
1508981 - 财政年份:2015
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
相似国自然基金
基于多算法组合协作的城市空中交通建模分析与优化管控研究
- 批准号:72301278
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
关怀效应与守门效应:员工-AI算法协作、任务情境与算法透明度对用户反应的影响
- 批准号:72372071
- 批准年份:2023
- 资助金额:42 万元
- 项目类别:面上项目
基于领域适应算法的人机协作学习能力泛化关键技术研究
- 批准号:62277002
- 批准年份:2022
- 资助金额:52.00 万元
- 项目类别:面上项目
基于领域适应算法的人机协作学习能力泛化关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:51 万元
- 项目类别:面上项目
移动群智感知中的协作优化关键算法研究
- 批准号:62272302
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
相似海外基金
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Collaborative: Advances in Socio-Algorithmic Information Diversity
EAGER:SaTC:早期跨学科合作:协作:社会算法信息多样性的进展
- 批准号:
1915833 - 财政年份:2019
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Collaborative: Advances in Socio-Algorithmic Information Diversity
EAGER:SaTC:早期跨学科合作:协作:社会算法信息多样性的进展
- 批准号:
1949077 - 财政年份:2019
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Collaborative: Advances in Socio-Algorithmic Information Diversity
EAGER:SaTC:早期跨学科合作:协作:社会算法信息多样性的进展
- 批准号:
1915837 - 财政年份:2019
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Toward Informing Users About Algorithmic Fairness
EAGER:协作研究:向用户通报算法公平性
- 批准号:
1844462 - 财政年份:2018
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Toward Informing Users About Algorithmic Fairness
EAGER:协作研究:向用户通报算法公平性
- 批准号:
1844518 - 财政年份:2018
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant