Citizen Science EAGER: Quantifying Uncertainty in Crowd Response for Reliable Wind Hazard and Damage Assessment
公民科学 EAGER:量化人群反应的不确定性,以进行可靠的风灾和损害评估
基本信息
- 批准号:1645386
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-10-01 至 2018-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Damage to infrastructure arising from windstorms exceeds damage from any other natural hazard in the U.S. The highly variable nature of wind loadings on buildings during a windstorm, however, means that accurate characterization at the damage location may not be captured by current measurement networks. Ubiquitous smartphone and internet availability, widespread use and rapid dissemination of social media, the power of crowds engaged in scientific endeavors, and the public's awareness of vulnerabilities point to a paradigm shift in sensing hazards in general. In the case of windstorm damage, on-the-ground data retrieved and shared by Citizen Science public participation may provide windstorm data previously unavailable. The primary focus of this EArly-concept Grant for Exploratory Research (EAGER) award is to study "human-sensor" data collected through Amazon Mechanical Turk-- a crowd sourcing application. Volunteers will be shown images and related data from actual windstorms and asked to characterize the damage and their confidence in their assessments. These data will be used to design a crowd sourcing algorithm that will enable robust Citizen Science public participation in the rapid identification of damage areas to help decision makers to allocate resources for damage response and recovery efforts and for targeted damage assessments, which can help to improve the design of buildings in regions susceptible to intense windstorms. This project will address two key questions: How can one quantify the confidence in crowdsourced damage assessment? How can one design a tool for more reliable crowdsourcing given unreliable participants? Researchers will initially compile a "validation set" of data that includes imagery, damage states and wind speed estimates for approximately 8,000 structures that were affected by the Joplin, MO tornado. The data set will be used to create a reliable crowdsourced image classification scheme in the form of online questionnaires for the public. The questionnaires will be tested by collecting assessment reports from participants on Amazon Mechanical Turk. These reports will inform development of an uncertainty model for participant reliability, which forms the basis for a coding-theoretic crowdsourcing algorithm that is robust to uncertainties due to unreliable participants. This algorithm will be tested against a separate dataset to compare the researchers' approach with one that doesn't control for participant unreliability. The final research results will be shared with NOAA for use in training surveyors to assess wind damage and to provide tutorials for the public.
风暴对基础设施造成的损害超过了美国任何其他自然灾害造成的损害。然而,风暴期间建筑物上的风荷载的高度可变性意味着当前的测量网络可能无法捕获损坏位置的准确特征。无处不在的智能手机和互联网、社交媒体的广泛使用和快速传播、参与科学事业的人群的力量以及公众对脆弱性的认识,这些都表明感知危害的范式发生了转变。 在发生风暴破坏的情况下,公民科学公众参与检索和共享的实地数据可能会提供以前无法获得的风暴数据。这项早期概念探索性研究资助 (EAGER) 奖项的主要重点是研究通过 Amazon Mechanical Turk(一种众包应用程序)收集的“人体传感器”数据。 志愿者将看到来自实际风暴的图像和相关数据,并被要求描述损害的特征以及他们对评估的信心。 这些数据将用于设计众包算法,使公民科学公众能够积极参与快速识别受损区域,帮助决策者为受损响应和恢复工作以及有针对性的受损评估分配资源,从而有助于改善易受强烈风暴影响地区的建筑设计。 该项目将解决两个关键问题:如何量化众包损害评估的信心? 在参与者不可靠的情况下,如何设计一种更可靠的众包工具?研究人员最初将编制一组“验证数据”,其中包括受密苏里州乔普林龙卷风影响的约 8,000 个建筑物的图像、损坏状态和风速估计。该数据集将用于以在线问卷调查的形式向公众创建可靠的众包图像分类方案。调查问卷将通过在 Amazon Mechanical Turk 上收集参与者的评估报告来进行测试。这些报告将为参与者可靠性不确定性模型的开发提供信息,该模型构成了编码理论众包算法的基础,该算法对不可靠参与者造成的不确定性具有鲁棒性。该算法将针对单独的数据集进行测试,以将研究人员的方法与不控制参与者不可靠性的方法进行比较。最终的研究结果将与 NOAA 共享,用于培训测量员评估风害并为公众提供教程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hadi Meidani其他文献
Educational Technology Platforms and Shift in Pedagogical Approach to Support Computing Integration Into Two Sophomore Civil and Environmental Engineering Courses
教育技术平台和教学方法的转变,支持将计算集成到二年级土木与环境工程课程中
- DOI:
10.18260/1-2--37005 - 发表时间:
- 期刊:
- 影响因子:0
- 作者:
S. Koloutsou;Eleftheria Kontou;Christopher Tessum;Lei Zhao;Hadi Meidani - 通讯作者:
Hadi Meidani
End-to-end heterogeneous graph neural networks for traffic assignment
用于流量分配的端到端异构图神经网络
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Tong Liu;Hadi Meidani - 通讯作者:
Hadi Meidani
Physics-informed Mesh-independent Deep Compositional Operator Network
物理信息独立于网格的深度组合算子网络
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Weiheng Zhong;Hadi Meidani - 通讯作者:
Hadi Meidani
Hadi Meidani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hadi Meidani', 18)}}的其他基金
I-Corps: AI-Based Decision Support for Management of Bridge Networks
I-Corps:基于人工智能的桥梁网络管理决策支持
- 批准号:
2326446 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
SCC-CIVIC-PG Track A: Jitney+: Redesign of a Legacy Mobility Service for Lower-income Communities in the Post-COVID Digital Age
SCC-CIVIC-PG 轨道 A:Jitney:为后 COVID 数字时代的低收入社区重新设计传统移动服务
- 批准号:
2044055 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
CAREER: Efficient Predictive Modeling for Infrastructure Systems Using Polynomial Approximation
职业:使用多项式逼近对基础设施系统进行高效预测建模
- 批准号:
1752302 - 财政年份:2018
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似国自然基金
国际应用系统分析研究学会2023暑期青年科学家项目
- 批准号:
- 批准年份:2023
- 资助金额:4.5 万元
- 项目类别:
基于可解释机器学习的科学知识角色转变预测研究
- 批准号:72304108
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向论文引用与科研合作的"科学学"规律中的国别特征研究
- 批准号:72374173
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
战略与管理研究类:电气科学与工程学科研究方向与关键词优化
- 批准号:52342702
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:专项基金项目
X9R高温多层陶瓷电容器(MLCC)中关键科学与技术难题研究
- 批准号:52302276
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CoPe EAGER: Development of a Drone-Based Coastal Change Monitoring Program through Citizen Science Partnership and Capacity Building
CoPe EAGER:通过公民科学合作和能力建设开发基于无人机的海岸变化监测计划
- 批准号:
1939979 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
EAGER: ISN: Unraveling Illicit Supply Chains for Falsified Pharmaceuticals with a Citizen Science Approach
EAGER:ISN:以公民科学的方式揭开假药的非法供应链
- 批准号:
1842369 - 财政年份:2018
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
EAGER: CITIZEN SCIENCE BASED WATER QUALITY MONITORING IN UTAH LAKE
渴望:基于公民科学的犹他湖水质监测
- 批准号:
1743412 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
EAGER - GLOBE (NSF16-031): Collaborative Research: Leveraging GLOBE student and citizen science data on the Flyover Country mobile platform for place-based, data-driven education
EAGER - GLOBE (NSF16-031):协作研究:利用 Flyover Country 移动平台上的 GLOBE 学生和公民科学数据进行基于地点的数据驱动教育
- 批准号:
1643277 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Role of Citizen Science in Watershed Hydrology Research: Relationships between Volunteer Motivations, Data Quantity and Quality, and Decision-Making
EAGER:协作研究:公民科学在流域水文学研究中的作用:志愿者动机、数据数量和质量以及决策之间的关系
- 批准号:
1644862 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Standard Grant