I-Corps: AI-Based Decision Support for Management of Bridge Networks
I-Corps:基于人工智能的桥梁网络管理决策支持
基本信息
- 批准号:2326446
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this I-Corps project is the development of decision support software systems for optimal management of transportation networks. These systems address risks associated with network assets as well as the emergent traffic dynamics that would likely ensue in natural hazards. Planners from various entities, including state agencies and municipalities may use this system for optimal asset management for transportation infrastructure, based on the current conditions of the physical infrastructure and the predicted high priority areas. This decision support system also may enhance evacuation planning and post-disaster network management procedures, as it can provide mobility maps that are updated with incoming data during and after a disaster.This I-Corps project is based on the development of graph neural network (GNN) models that may be used to estimate the network response under probabilistic natural hazards with minimal computational time. These neural network models are designed to calculate various response measures, such as connectivity, shortest distance, and travel times. The modular feature of GNNs allows for models that are developed using data from networks in one city or region to be usable in another region. These models may be used for extreme events such as earthquakes, floods, hurricanes, and tornadoes. The proposed technology is building upon successful numerical experiments on transportation networks in California, New York, and Florida for seismic and flood hazards. The accuracy, computational efficiency, and robustness of these GNN models are documented. The decision support that will be built on these GNN models will feature intelligent tools that evaluate the current conditions of the physical infrastructure, rank investment decisions related to network planning to focus on high priority concerns. It also may facilitate effective emergency response by combining the same predictive capabilities with real-time network data to effectively update response plans.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该I-Corps项目的更广泛的影响/商业潜力是开发决策支持软件系统,用于运输网络的最佳管理。这些系统解决了与网络资产有关的风险以及可能在自然危害中随之而来的新兴交通动态。包括州机构和市政当局在内的各个实体的规划人员可能会根据当前的物理基础设施的当前条件和预测的高优先级领域,将该系统用于运输基础设施的最佳资产管理。该决策支持系统还可以增强疏散计划和后策划后网络管理程序,因为它可以提供灾难期间和之后随输入数据更新的机动性图。此I-CORPS项目基于图形神经网络(GNN)模型的开发,这些模型可用于估算与最小值计算时间的概率自然危害下的网络响应。这些神经网络模型旨在计算各种响应措施,例如连通性,最短距离和旅行时间。 GNNS的模块化功能允许使用来自另一个城市或地区的网络数据开发的模型,可在另一个地区使用。这些模型可用于极端事件,例如地震,洪水,飓风和龙卷风。拟议的技术是基于在加利福尼亚州,纽约和佛罗里达州的运输网络上成功进行的数值实验,以实现地震和洪水危害。记录了这些GNN模型的准确性,计算效率和鲁棒性。将建立在这些GNN模型上的决策支持将采用智能工具,以评估与网络计划有关的物理基础设施的当前条件,排名投资决策,以关注高优先级问题。它还可以通过将相同的预测能力与实时网络数据相结合以有效地更新响应计划来促进有效的紧急响应。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,认为值得通过评估来获得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hadi Meidani其他文献
Physics-informed Mesh-independent Deep Compositional Operator Network
物理信息独立于网格的深度组合算子网络
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Weiheng Zhong;Hadi Meidani - 通讯作者:
Hadi Meidani
Educational Technology Platforms and Shift in Pedagogical Approach to Support Computing Integration Into Two Sophomore Civil and Environmental Engineering Courses
教育技术平台和教学方法的转变,支持将计算集成到二年级土木与环境工程课程中
- DOI:
10.18260/1-2--37005 - 发表时间:
- 期刊:
- 影响因子:0
- 作者:
S. Koloutsou;Eleftheria Kontou;Christopher Tessum;Lei Zhao;Hadi Meidani - 通讯作者:
Hadi Meidani
Physics-Informed Geometry-Aware Neural Operator
- DOI:
10.1016/j.cma.2024.117540 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:
- 作者:
Weiheng Zhong;Hadi Meidani - 通讯作者:
Hadi Meidani
End-to-end heterogeneous graph neural networks for traffic assignment
用于流量分配的端到端异构图神经网络
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Tong Liu;Hadi Meidani - 通讯作者:
Hadi Meidani
Development of an overweight vehicle permit fee structure for Illinois
- DOI:
10.1016/j.tranpol.2019.08.002 - 发表时间:
2019-10-01 - 期刊:
- 影响因子:
- 作者:
Osman Erman Gungor;Antoine Michel Alain Petit;Junjie Qiu;Jingnan Zhao;Hadi Meidani;Hao Wang;Yanfeng Ouyang;Imad L. Al-Qadi;Justan Mann - 通讯作者:
Justan Mann
Hadi Meidani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hadi Meidani', 18)}}的其他基金
SCC-CIVIC-PG Track A: Jitney+: Redesign of a Legacy Mobility Service for Lower-income Communities in the Post-COVID Digital Age
SCC-CIVIC-PG 轨道 A:Jitney:为后 COVID 数字时代的低收入社区重新设计传统移动服务
- 批准号:
2044055 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CAREER: Efficient Predictive Modeling for Infrastructure Systems Using Polynomial Approximation
职业:使用多项式逼近对基础设施系统进行高效预测建模
- 批准号:
1752302 - 财政年份:2018
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Citizen Science EAGER: Quantifying Uncertainty in Crowd Response for Reliable Wind Hazard and Damage Assessment
公民科学 EAGER:量化人群反应的不确定性,以进行可靠的风灾和损害评估
- 批准号:
1645386 - 财政年份:2016
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似国自然基金
基于国产AI芯片的自动布局布线优化算法研究
- 批准号:62306286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于“人工智能算法+高精度遥感数据”的棉花表型信息识别及解析
- 批准号:32360436
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于原子贡献与人工智能的萃取精馏溶剂分子设计研究
- 批准号:22308037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度渐进学习的CT图像重建和多任务协同式AI辅助诊断模型研究
- 批准号:62371190
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
人与AI创造力共舞: AI介入的创造力悖论及基于综合创造力4D模型的破解机制研究
- 批准号:72372045
- 批准年份:2023
- 资助金额:42 万元
- 项目类别:面上项目
相似海外基金
I-Corps: Centralized, Cloud-Based, Artificial Intelligence (AI) Video Analysis for Enhanced Intubation Documentation and Continuous Quality Control
I-Corps:基于云的集中式人工智能 (AI) 视频分析,用于增强插管记录和持续质量控制
- 批准号:
2405662 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Artificial Intelligence (AI)-based Image Fusion Technology for Guiding Prostate Biopsies
I-Corps:基于人工智能 (AI) 的图像融合技术,用于指导前列腺活检
- 批准号:
2333204 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Tree-based artificial intelligence (AI) models for financial fraud detection
I-Corps:用于金融欺诈检测的基于树的人工智能 (AI) 模型
- 批准号:
2228243 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Artificial Intelligence (AI)-Based Sensing and Data Efficient Sampling, Transmission, Storage, Analysis and Cloud Computing
I-Corps:基于人工智能(AI)的传感和数据高效采样、传输、存储、分析和云计算
- 批准号:
2235121 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
An AI-based Multimodal Approach to Predict Pain in Postnatal Care Scenarios
基于人工智能的多模式方法来预测产后护理场景中的疼痛
- 批准号:
10546650 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别: