EAGER: Monolithic Phononic Crystals and Programmable Surface Acoustic Wave Microfluidics
EAGER:单片声子晶体和可编程表面声波微流体
基本信息
- 批准号:1642502
- 负责人:
- 金额:$ 8.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The last few decades, a number of major technological breakthroughs are mainly enabled by our ability to control two elementary particles: electrons and photons. Phonon is another important elementary particle that is responsible from heat and sound transfer. However, there are only limited studies focused on exploiting phonons for our needs. Harvesting phonons, specifically surface acoustic waves, could lead to new practical microfluidic devices with novel properties. Acoustic phonons can exert strong radiation forces to bioparticles (viruses, bacteria and cell) and manipulate them with high precision and efficiency. This proposal offers using phononic crystals to achieve this. Incorporation of such phononic crystals with microfluidics provides an unprecedented level of control on surface acoustic waves in microfluidic system. This capability can potentially lead to monolithic, ultra-compact, versatile and programmable microfluidic devices. Fusing of phononics and microfluidics could open door to a new world of lab-on-chip biomedical technologies and impact everyday life in previously unthinkable ways, in a similar fashion to how electrons and photons did so far. The educational component of this program is expected to provide UCSC undergraduate and graduate students with interdisciplinary training in physics, electrical engineering and biological sciences. Outcomes of the research will be integrated in a graduate student curriculum and results will be disseminated to broader audience by presentations to middle school Girls through 'Girls in Engineering Program' and to underrepresented minorities through 'Multicultural Engineering Program' The objective of this research proposal is to explore the feasibility of developing microfluidic devices with new functionalities using phononic crystals on silicon substrates. Phononic crystals offer potentially unlimited ways of tailoring acoustic waves. However, to date, they have not been used in acousto-microfluidic applications, other than few simple applications related to mixing and guiding of microdroplets resting on a solid substrate in open air. Full integration of continuous flow microfluidics and phononic crystals has yet to be demonstrated. This project aims to demonstrate practical, facile utilization of phononic crystals in acoustofluidics by making use of the concepts such as band gap formation and evanescent modes of defect states. In this one-year proposal, two basic design concepts will be explored: (i) phononic crystal reflectors, and (ii) phononic crystal waveguide structures. These two structures offer a complete set of basic building blocks to achieve more complex phononic crystal microfluidics with enhanced capabilities (see motivation section below). This one-year project has four specific goals: (1)To design phononic crystal devices with theoretical modeling and finite element simulations. (2)To fabricate of phononic crystal devices and integrate them with interdigital transducers on a silicon substrate. (3)To characterize surface acoustic wave behavior of the integrated structures. (4)To integrate microfluidics with phononic crystals and interdigital transducers to achieve size based micro-particle separation and micro-particle guiding. The proposed research program involves numerical design of monolithic acoustofluidic systems in which particle manipulation is taken care of by phononic crystals through techniques, such as finite-element method. The devices are fabricated using well-established microfabrication techniques such as photolithography, metal deposition, soft lithography and deep reactive ion etching. In this proposal, microfuidic testing will be limited to fluorescent silica particles for rapid device development purposes.
在过去的几十年中,许多主要的技术突破主要是由于我们控制两个基本粒子的能力:电子和光子。声子是另一个重要的基本粒子,是由热量和声音传递负责的。但是,只有有限的研究重点是为我们的需求利用声子。收获声子,特别是表面声波,可能导致具有新型特性的新实用微流体设备。声音子可以向生物颗粒(病毒,细菌和细胞)发挥强烈的辐射力,并以高精度和效率来操纵它们。该提案提供了使用Phononic Crystals实现这一目标的建议。将这种语音晶体与微流体融合在一起为微流体系统中的表面声波提供了前所未有的控制水平。这种能力可能会导致整体,超紧凑,多功能和可编程的微流体设备。语音和微流体的融合可以打开一个新的片上实验室生物医学技术的世界,并以以前无法想象的方式影响日常生活,其方式与到目前为止电子和光子的表现类似。该计划的教育部分有望为UCSC的本科生和研究生提供物理,电气工程和生物科学的跨学科培训。这项研究的结果将整合到研究生课程中,结果将通过“工程女生”中的中学女孩的介绍将更广泛的受众传播到更广泛的受众群体中,并通过“多元文化工程计划”的目的来探索与新功能相关的siliconic siliconics silicnic consic silic contrications探索该研究建议的目标。音调晶体提供了定制声波的潜在无限方法。但是,迄今为止,除了与露天基板上的微颗粒混合和指导相关的少数简单应用中,它们尚未用于大量微流体应用。连续流微流体和语音晶体的完整整合尚待证明。该项目旨在通过利用诸如带隙形成和缺陷状态的逃生模式来证明对Acoustofluidics中语音晶体的实用,便捷的利用。在这个为期一年的建议中,将探讨两个基本的设计概念:(i)音调晶体反射器和(ii)Phononic Crystal波导结构。这两个结构提供了一组完整的基本构建块,以实现具有增强功能的更复杂的语音晶体微流体(请参见下面的动机部分)。这个为期一年的项目有四个特定的目标:(1)使用理论建模和有限元模拟设计语音晶体设备。 (2)制造语音晶体设备,并将它们与硅基板上的跨换能器集成在一起。 (3)表征集成结构的表面声波行为。 (4)将微流体与音调晶体和跨胶水换能器整合在一起,以实现基于尺寸的微颗粒分离和微颗粒引导。拟议的研究计划涉及整体式浮力系统的数值设计,其中通过技术(例如有限元方法)通过语音晶体来照顾粒子操纵。这些设备是使用良好的微型化技术制造的,例如光刻,金属沉积,柔软的光刻和深反应性离子蚀刻。在此提案中,用于快速设备开发目的的荧光二氧化硅颗粒将仅限于荧光二氧化硅颗粒。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ahmet Yanik其他文献
Comparison of CHA₂DS₂VASc and R₂CHA₂DS₂VASc Score Estimation of In-Hospital Mortality Among COVID-19 Patients
CHA2DS2VASc 和 R2CHA2DS2VASc 评分对 COVID-19 患者院内死亡率估计的比较
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Faruk Boyaci;Mustafa Kursat Sahin;Yanki Boyaci;Ahmet Yanik;Gokhan Aksan;COVİD;Hastane İçi;Mortalitenin CHA₂DS₂VASc;R₂CHA₂DS₂VASc Skor;Tahmininin Karşılaştırılması - 通讯作者:
Tahmininin Karşılaştırılması
Ahmet Yanik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ahmet Yanik', 18)}}的其他基金
I-Corps: Massively Parallel High-Resolution Optical Electrophysiology
I-Corps:大规模并行高分辨率光学电生理学
- 批准号:
2225739 - 财政年份:2022
- 资助金额:
$ 8.5万 - 项目类别:
Standard Grant
CAREER: Ionic-Type Phononic Metamaterials: Physics and Acousto-Fluidic Applications
职业:离子型声子超材料:物理和声流体应用
- 批准号:
1847733 - 财政年份:2019
- 资助金额:
$ 8.5万 - 项目类别:
Continuing Grant
Collaborative Research: Plasmonic Nanoantenna Electrode Arrays (NEAs) for Massively Multiplexed Identification of Stem-Cell Derived Cardiac Cells in Regenerative Therapies
合作研究:等离激元纳米天线电极阵列(NEA)用于再生治疗中干细胞来源的心肌细胞的大规模多重识别
- 批准号:
1611290 - 财政年份:2016
- 资助金额:
$ 8.5万 - 项目类别:
Standard Grant
相似国自然基金
光透明成像研究DMD小鼠骨骼肌神经肌肉接头三维整体精细结构特征及变化
- 批准号:82372012
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
TC17钛合金整体叶盘切削加工表层梯度结构主动调控机制
- 批准号:52305506
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于成分转化-体内时空分布-空间代谢组学整体耦联阐释女贞子蒸制的科学内涵
- 批准号:82374041
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
整体域及其上阿贝尔簇相关算术对象的变化规律研究
- 批准号:12371013
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于光引发点击化学的整体柱制备及在血脑屏障芯片评价益智仁黄酮类成分跨膜转运中的应用
- 批准号:82360707
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
相似海外基金
ビデオシースルー型HMDでの身体動作を伴う訓練における映像の空間的整合性の影響
涉及身体运动的训练中图像空间一致性对视频透视HMD的影响
- 批准号:
24K15056 - 财政年份:2024
- 资助金额:
$ 8.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Monolithic generation & detection of squeezed light in silicon nitride photonics (Mono-Squeeze)
单片一代
- 批准号:
EP/X016218/1 - 财政年份:2024
- 资助金额:
$ 8.5万 - 项目类别:
Research Grant
緩和ケアの提供体制の整備及び質の向上に関する研究
发展姑息治疗提供系统和提高质量的研究
- 批准号:
24K20333 - 财政年份:2024
- 资助金额:
$ 8.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
リアノジン受容体を分子標的とした心不全・不整脈治療の開発
以兰尼碱受体为分子靶点开发心力衰竭和心律失常治疗方法
- 批准号:
24K11217 - 财政年份:2024
- 资助金额:
$ 8.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
連続的な構造調整に基づく共有結合性有機構造体のゲスト応答機構解明
基于连续结构调整阐明共价有机结构的客体响应机制
- 批准号:
24K01553 - 财政年份:2024
- 资助金额:
$ 8.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)