TWC: Small: Intelligent Malware Detection Utilizing Novel File Relation-Based Features and Resilient Techniques for Adversarial Attacks

TWC:小型:利用新颖的基于文件关系的功能和弹性技术进行对抗性攻击的智能恶意软件检测

基本信息

  • 批准号:
    1618629
  • 负责人:
  • 金额:
    $ 48.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-15 至 2019-11-30
  • 项目状态:
    已结题

项目摘要

Malware (e.g., viruses, worms, and Trojans) is software that deliberately fulfills the harmful intent of an attacker. It has been used as a major weapon by the cyber-criminals to launch a wide range of attacks that cause serious damages and significant financial losses to many Internet users. To protect legitimate users from these attacks, the most significant line of defense against malware is anti-malware software products, which predominately use signature-based methods to recognize threats. However, driven by considerable economic benefits, malware attackers are using automated malware development toolkits to quickly write and modify malicious codes that can evade detection by anti-malware products. In order to remain effective, the anti-malware industry calls for much more powerful methods that are capable of protecting the users against new threats and are more difficult to evade. The broader impacts of this work include benefits to the society at large by making cyberspace more secure and resilient to cyber-attacks. The project integrates research with education through curriculum development activities and engages graduate and undergraduate students in research. It is also expected to increase the involvement of underrepresented groups, including minority and women. The goal of this project is to design and develop intelligent and resilient solutions against malware attacks. The project is focused on the following research aims: (1) design novel relation-based features (e.g., file co-occurrence, file co-location, and bundled installations) that are more robust and harder to evade in malware detection; (2) design and develop an effective semi-supervised learning framework utilizing both content-based and relation-based features for malware detection; and (3) design and develop resilient techniques against adversarial attacks on machine learning/data mining based models. The techniques developed by this project will create a resilient platform, at both feature and model levels, against adversarial malware attacks. Furthermore, the proposed techniques are designed to be arm race capable, and can be used in other cyber security domains, such as anti-spam, fraud detection, and counter-terrorism. Through this project, a joint computer security lab will be established which aims at creating innovations for intelligent and resilient defenses against malware attacks as well as other cybersecurity threats.
恶意软件(例如病毒、蠕虫和特洛伊木马)是故意实现攻击者有害意图的软件。它已被网络犯罪分子用作发动大范围攻击的主要武器,给许多互联网用户造成严重损害和重大经济损失。为了保护合法用户免受这些攻击,抵御恶意软件的最重要防线是反恶意软件软件产品,它们主要使用基于签名的方法来识别威胁。然而,在可观经济利益的驱动下,恶意软件攻击者正在使用自动化恶意软件开发工具包来快速编写和修改可以逃避反恶意软件产品检测的恶意代码。为了保持有效性,反恶意软件行业需要更强大的方法,能够保护用户免受新威胁并且更难以规避。这项工作的更广泛影响包括通过使网络空间更加安全、更能抵御网络攻击,为整个社会带来好处。该项目通过课程开发活动将研究与教育结合起来,并吸引研究生和本科生参与研究。预计还将增加少数群体和妇女等代表性不足群体的参与。该项目的目标是设计和开发针对恶意软件攻击的智能且有弹性的解决方案。该项目重点关注以下研究目标:(1)设计新颖的基于关系的特征(例如文件共现、文件共置和捆绑安装),这些特征在恶意软件检测中更强大且更难以逃避; (2) 设计和开发一个有效的半监督学习框架,利用基于内容和基于关系的特征进行恶意软件检测; (3) 设计和开发针对基于机器学习/数据挖掘的模型的对抗性攻击的弹性技术。该项目开发的技术将在功能和模型级别创建一个弹性平台,以抵御对抗性恶意软件攻击。此外,所提出的技术被设计为具有军备竞赛能力,并且可以用于其他网络安全领域,例如反垃圾邮件、欺诈检测和反恐。通过该项目,将建立一个联合计算机安全实验室,旨在为智能和弹性防御恶意软件攻击以及其他网络安全威胁创造创新。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yanfang Ye其他文献

Adversarial Cross-View Disentangled Graph Contrastive Learning
对抗性跨视图解缠图对比学习
  • DOI:
    10.48550/arxiv.2209.07699
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qianlong Wen;Z. Ouyang;Chunhui Zhang;Y. Qian;Yanfang Ye;Chuxu Zhang
  • 通讯作者:
    Chuxu Zhang
Pob1 participates in the Cdc42 regulation of fission yeast actin cytoskeleton.
Pob1 参与裂殖酵母肌动蛋白细胞骨架的 Cdc42 调节。
  • DOI:
    10.1091/mbc.e09-03-0207
  • 发表时间:
    2009-10-15
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Sergio A. Rincon;Yanfang Ye;M. A. Villar;B. Santos;Sophie G. Martin;P. Pérez
  • 通讯作者:
    P. Pérez
αCyber: Enhancing Robustness of Android Malware Detection System against Adversarial Attacks on Heterogeneous Graph based Model
αCyber​​:增强 Android 恶意软件检测系统针对基于异构图模型的对抗性攻击的鲁棒性
Fair Graph Representation Learning via Diverse Mixture-of-Experts
通过不同的专家组合进行公平图表示学习
  • DOI:
    10.1145/3543507.3583207
  • 发表时间:
    2023-04-30
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zheyuan Liu;Chunhui Zhang;Yijun Tian;Erchi Zhang;Chao Huang;Yanfang Ye;Chuxu Zhang
  • 通讯作者:
    Chuxu Zhang
Ensemble Clustering for Internet Security Applications
互联网安全应用的集成集群

Yanfang Ye的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yanfang Ye', 18)}}的其他基金

III: Small: A New Machine Learning Paradigm Towards Effective yet Efficient Foundation Graph Learning Models
III:小型:一种新的机器学习范式,实现有效且高效的基础图学习模型
  • 批准号:
    2321504
  • 财政年份:
    2023
  • 资助金额:
    $ 48.17万
  • 项目类别:
    Standard Grant
EAGER: A New Explainable Multi-objective Learning Framework for Personalized Dietary Recommendations against Opioid Misuse and Addiction
EAGER:一种新的可解释的多目标学习框架,用于针对阿片类药物滥用和成瘾的个性化饮食建议
  • 批准号:
    2334193
  • 财政年份:
    2023
  • 资助金额:
    $ 48.17万
  • 项目类别:
    Standard Grant
D-ISN: An AI-augmented Framework to Detect, Disrupt, and Dismantle Opioid Trafficking Networks
D-ISN:用于检测、破坏和拆除阿片类药物贩运网络的人工智能增强框架
  • 批准号:
    2146076
  • 财政年份:
    2022
  • 资助金额:
    $ 48.17万
  • 项目类别:
    Standard Grant
III: Small: Mining Heterogeneous Network Built from Multiple Data Sources to Reduce Opioid Overdose Risks
III:小型:挖掘由多个数据源构建的异构网络以减少阿片类药物过量风险
  • 批准号:
    2214376
  • 财政年份:
    2021
  • 资助金额:
    $ 48.17万
  • 项目类别:
    Standard Grant
EAGER: A Holistic Heterogeneous Temporal Graph Transformer Framework with Meta-learning to Combat Opioid Epidemic
EAGER:利用元学习对抗阿片类药物流行病的整体异构时间图转换器框架
  • 批准号:
    2203262
  • 财政年份:
    2021
  • 资助金额:
    $ 48.17万
  • 项目类别:
    Standard Grant
CAREER: Securing Cyberspace: Gaining Deep Insights into the Online Underground Ecosystem
职业:保护网络空间:深入了解在线地下生态系统
  • 批准号:
    2203261
  • 财政年份:
    2021
  • 资助金额:
    $ 48.17万
  • 项目类别:
    Continuing Grant
EAGER: An AI-driven Paradigm for Collective and Collaborative Community Resilience in the COVID-19 Era and Beyond
EAGER:COVID-19 时代及以后的集体和协作社区复原力的人工智能驱动范式
  • 批准号:
    2209814
  • 财政年份:
    2021
  • 资助金额:
    $ 48.17万
  • 项目类别:
    Standard Grant
III: Medium: A Data-driven and AI-augmented Framework for Collaborative Decision Making to Combat Infectious Disease Outbreaks
III:媒介:数据驱动和人工智能增强的框架,用于对抗传染病爆发的协作决策
  • 批准号:
    2107172
  • 财政年份:
    2021
  • 资助金额:
    $ 48.17万
  • 项目类别:
    Continuing Grant
CICI: SSC: SciTrust: Enhancing Security for Modern Software Programming Cyberinfrastructure
CICI:SSC:SciTrust:增强现代软件编程网络基础设施的安全性
  • 批准号:
    2218762
  • 财政年份:
    2021
  • 资助金额:
    $ 48.17万
  • 项目类别:
    Standard Grant
EAGER: A Holistic Heterogeneous Temporal Graph Transformer Framework with Meta-learning to Combat Opioid Epidemic
EAGER:利用元学习对抗阿片类药物流行病的整体异构时间图转换器框架
  • 批准号:
    2140785
  • 财政年份:
    2021
  • 资助金额:
    $ 48.17万
  • 项目类别:
    Standard Grant

相似国自然基金

小分子代谢物Catechin与TRPV1相互作用激活外周感觉神经元介导尿毒症瘙痒的机制研究
  • 批准号:
    82371229
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
DHEA抑制小胶质细胞Fis1乳酸化修饰减轻POCD的机制
  • 批准号:
    82301369
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SETDB1调控小胶质细胞功能及参与阿尔茨海默病发病机制的研究
  • 批准号:
    82371419
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
PTBP1驱动H4K12la/BRD4/HIF1α复合物-PKM2正反馈环路促进非小细胞肺癌糖代谢重编程的机制研究及治疗方案探索
  • 批准号:
    82303616
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CC* Integration-Small: Network cyberinfrastructure innovation with an intelligent real-time traffic analysis framework and application-aware networking
CC* Integration-Small:网络基础设施创新,具有智能实时流量分析框架和应用感知网络
  • 批准号:
    2322369
  • 财政年份:
    2023
  • 资助金额:
    $ 48.17万
  • 项目类别:
    Standard Grant
CPS: Small: Brain-Inspired Memorization and Attention for Intelligent Sensing
CPS:小:智能传感的受大脑启发的记忆和注意力
  • 批准号:
    2312517
  • 财政年份:
    2023
  • 资助金额:
    $ 48.17万
  • 项目类别:
    Standard Grant
Access-H20: Sensor driven smart faucet to enable and empower independent drinking and grooming for individuals impacted by spinal cord injury
Access-H20:传感器驱动的智能水龙头,使受脊髓损伤的个人能够独立饮酒和梳洗
  • 批准号:
    10817375
  • 财政年份:
    2023
  • 资助金额:
    $ 48.17万
  • 项目类别:
PKU Now-Connect: An intelligent digital ecosystem to improve health outcomes in Phenylketonuria
PKU Now-Connect:改善苯丙酮尿症健康结果的智能数字生态系统
  • 批准号:
    10760659
  • 财政年份:
    2023
  • 资助金额:
    $ 48.17万
  • 项目类别:
III: Small: Intelligent Scientific Text Analytics with Knowledge-Augmented Abductive Reasoning
III:小:具有知识增强归纳推理的智能科学文本分析
  • 批准号:
    2234058
  • 财政年份:
    2023
  • 资助金额:
    $ 48.17万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了