CPS: Small: Brain-Inspired Memorization and Attention for Intelligent Sensing

CPS:小:智能传感的受大脑启发的记忆和注意力

基本信息

  • 批准号:
    2312517
  • 负责人:
  • 金额:
    $ 49.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Cyber-physical applications often analyze collected sensor data using machine learning algorithms. Many existing sensing systems lack intelligence about the target and naively generate large-scale data, making communication and computation significantly costly. In many cases, however, the data generated by sensors only contain useful information for a small portion of the sensor activity. For example, machine learning algorithms continuously process the visual sensors used for environmental/security monitoring to detect sensitive activities. Still, these sensors only carry out useful information for a short time. On the other hand, biological sensors intelligently generate orders of magnitude less amount of data. This project develops machine learning algorithms that provide real-time feedback to sensors to ensure they only generate data needed for learning purposes. The approach is expected to provide up to four orders of magnitude data reduction from sensors. The results from this research will broadly impact many sensors used in internet-of-things applications, including infrastructure, mobile devices, autonomous systems, robotics, and healthcare. The project will also support underrepresented minority students through synergistic outreach plans and educational activities, including programs for K-12 students, undergraduate research opportunities, and new course development.The research approaches introduced in this project aim to make fundamental changes to sensing systems in order to make future sensors intelligent for a wide range of cyber-physical applications. First, this project will develop novel brain-inspired learning algorithms that can provide fast and real-time feedback to the sensing module to intelligently control the rate of data generation from sensors. This feedback also makes sensors aware of the target task, enabling situational awareness. Second, the project will develop a novel framework that tightly integrates with a sensing circuit and brain-inspired algorithms to dynamically control the sensor functionality in a close-loop manner. The proposed hardware platform exploits the robustness of learning algorithms to design near-sensor computing platforms that are highly approximate, parallel, and efficient. Finally, this project aims to evaluate the effectiveness of the framework on multiple large-scale systems. The prototype will be fully released under an established open-source library for public dissemination.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
网络物理应用程序通常使用机器学习算法分析收集的传感器数据。许多现有的传感系统缺乏关于目标的智能,并且天真地生成大规模数据,使得通信和计算成本高昂。然而,在许多情况下,传感器生成的数据仅包含对一小部分传感器活动有用的信息。例如,机器学习算法不断处理用于环境/安全监控的视觉传感器,以检测敏感活动。尽管如此,这些传感器只能在短时间内提供有用的信息。另一方面,生物传感器智能地生成数量级较少的数据。该项目开发机器学习算法,为传感器提供实时反馈,以确保它们只生成学习目的所需的数据。该方法预计可将传感器的数据减少多达四个数量级。这项研究的结果将广泛影响物联网应用中使用的许多传感器,包括基础设施、移动设备、自主系统、机器人和医疗保健。该项目还将通过协同推广计划和教育活动来支持代表性不足的少数族裔学生,包括 K-12 学生项目、本科生研究机会和新课程开发。该项目引入的研究方法旨在对传感系统进行根本性改变,以便使未来的传感器变得智能化,适用于广泛的网络物理应用。首先,该项目将开发新颖的类脑学习算法,可以向传感模块提供快速、实时的反馈,以智能地控制传感器数据生成的速率。这种反馈还使传感器了解目标任务,从而实现态势感知。其次,该项目将开发一种新颖的框架,与传感电路和受大脑启发的算法紧密集成,以闭环方式动态控制传感器功能。所提出的硬件平台利用学习算法的鲁棒性来设计高度近似、并行和高效的近传感器计算平台。最后,该项目旨在评估该框架在多个大型系统上的有效性。该原型将在已建立的开源库下全面发布,以供公众传播。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mohsen Imani其他文献

Towards Efficient Hyperdimensional Computing Using Photonics
利用光子学实现高效的超维计算
  • DOI:
    10.48550/arxiv.2311.17801
  • 发表时间:
    2023-11-29
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Farbin Fayza;Cansu Demirkıran;Hanning Chen;Che;Avi Mohan;H. E. Barkam;Sanggeon Yun;Mohsen Imani;David Zhang;D. Bun;ar;ar;Ajay Joshi
  • 通讯作者:
    Ajay Joshi
Memory-Based Computing for Energy-Efficient AI: Grand Challenges
基于内存的节能人工智能计算:巨大挑战
Hyperdimensional computing with holographic and adaptive encoder
使用全息和自适应编码器的超维计算
  • DOI:
    10.3389/frai.2024.1371988
  • 发表时间:
    2024-04-09
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Alej;ro Hernández;ro;Yang Ni;Zhuowen Zou;Ali Zakeri;Mohsen Imani
  • 通讯作者:
    Mohsen Imani
TaskCLIP: Extend Large Vision-Language Model for Task Oriented Object Detection
TaskCLIP:扩展大型视觉语言模型以实现面向任务的对象检测
  • DOI:
    10.48550/arxiv.2403.08108
  • 发表时间:
    2024-03-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hanning Chen;Wenjun Huang;Yang Ni;Sanggeon Yun;Fei Wen;Hugo Latapie;Mohsen Imani
  • 通讯作者:
    Mohsen Imani
Efficacy of multiplex PCR procedure for Iranian Streptococcus pneumoniae isolates
多重 PCR 程序对伊朗肺炎链球菌分离株的功效
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    M. Hajia;M. Rahbar;Marjan Rahnami Farzami;A. Dolatyar;Mohsen Imani;Roghieh Saburian;M. Farzanehkhah
  • 通讯作者:
    M. Farzanehkhah

Mohsen Imani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mohsen Imani', 18)}}的其他基金

Neurally-Inspired Integration of Communication and Cognitive Computation in Hyperspace
超空间中通信和认知计算的神经启发集成
  • 批准号:
    2319198
  • 财政年份:
    2023
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant
UKRI/BBSRC-NSF/BIO: Interpretable and Noise-Robust Machine Learning for Neurophysiology
UKRI/BBSRC-NSF/BIO:用于神经生理学的可解释且抗噪声的机器学习
  • 批准号:
    2321840
  • 财政年份:
    2023
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Continuing Grant
Hyperdimensional Neural Computation for Real-Time Cognitive Learning
用于实时认知学习的超维神经计算
  • 批准号:
    2127780
  • 财政年份:
    2021
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant

相似国自然基金

靶向小胶质细胞的仿生甘草酸纳米颗粒构建及作用机制研究:脓毒症相关性脑病的治疗新策略
  • 批准号:
    82302422
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
HMGB1/TLR4/Cathepsin B途径介导的小胶质细胞焦亡在新生大鼠缺氧缺血脑病中的作用与机制
  • 批准号:
    82371712
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
Plin2经脂质代谢途径调控小胶质细胞炎症反应在慢性低灌注脑白质损伤中的作用及机制研究
  • 批准号:
    82301507
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
小细胞肺癌脑、肾上腺等多器官转移的谱系可塑性机制与干预研究
  • 批准号:
    82330087
  • 批准年份:
    2023
  • 资助金额:
    220 万元
  • 项目类别:
    重点项目

相似海外基金

Individual Predoctoral Fellowship
个人博士前奖学金
  • 批准号:
    10752036
  • 财政年份:
    2024
  • 资助金额:
    $ 49.98万
  • 项目类别:
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
  • 批准号:
    10752555
  • 财政年份:
    2024
  • 资助金额:
    $ 49.98万
  • 项目类别:
Using epigenetic science to improve environmental health literacy
利用表观遗传学提高环境健康素养
  • 批准号:
    10524680
  • 财政年份:
    2023
  • 资助金额:
    $ 49.98万
  • 项目类别:
Collaborative Research: SaTC: CORE: Small: Securing Brain-inspired Hyperdimensional Computing against Design-time and Run-time Attacks for Edge Devices
协作研究:SaTC:核心:小型:保护类脑超维计算免受边缘设备的设计时和运行时攻击
  • 批准号:
    2326597
  • 财政年份:
    2023
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Continuing Grant
Developing a novel system combining cognitive assessment with PASCALL FDA-cleared intraoperative anesthesia EEG brain monitor to prevent postoperative neurocognitive disorders in aging patients
开发一种将认知评估与 FDA 批准的 PASCALL 术中麻醉脑电图脑监测仪相结合的新型系统,以预防老年患者术后神经认知障碍
  • 批准号:
    10760816
  • 财政年份:
    2023
  • 资助金额:
    $ 49.98万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了