CHS: Small: Collaborative Research: Teleoperation with Passive, Transparent Force Feedback for MR-Guided Interventions

CHS:小型:协作研究:利用被动、透明力反馈进行 MR 引导干预的远程操作

基本信息

  • 批准号:
    1615891
  • 负责人:
  • 金额:
    $ 32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

Magnetic resonance imaging (MRI) is a widely used diagnostic tool that provides physicians with a remarkable extension to their natural vision, offering unparalleled high-definition visuals which enable soft tissue pathophysiology diagnosis, lesion delineation, and therapy monitoring without ionizing radiation. Increasingly, physicians would like to use MRI not only for diagnosis but also for guided procedures like biopsy or tumor ablation, for greater accuracy. However, the MR bore's geometry compels the physician to stand outside and transmit motions and forces remotely to tools operating on the patient within. So although MR provides superior imaging, the sense of touch is absent. To overcome this deficiency and achieve telepresence, physicians require a high-fidelity force-reflecting teleoperation system. Added challenges are imposed by MR's intense magnetic field; ferromagnetic materials and electronics with current flow must be avoided, and even non-ferrous metals can produce imaging artifacts, which constrains the choice of actuators, transmissions, and sensors. The PIs' goal in this project is to empower physicians to operate as if they were directly in contact with their patients, by integrating real-time 3D tissue imaging with kinesthetic and force feedback for physical interactions. Project outcomes have the potential to directly affect a large population, because the high-fidelity force transmission developed here will be applicable to other image-guided interventions such as drug delivery and ultrasound. The hybrid hydrostatic transmission will be applicable to (and indeed was initially conceived for) interactive human-safe robots; advances made in adapting it to MR-guided interventions will allow maturation of the technology and reductions in size and cost that will help push it into additional fields like medical robotics and bilateral teleoperation. This research represents a collaboration among experts in robotics, haptics and interventional radiology. The work will build upon and extend a novel bilateral teleoperator based on hydrostatic and pneumatic elements with rolling diaphragm actuators that provides a unique combination of low inertia, passivity, high stiffness and transparency, and negligible friction and backlash, and which is ideally suited to provide kinesthetic and force feedback between a physician outside the MR bore and tools operating on a patient within, allowing physicians to feel tissue property variations, for example. Sensitive, dexterous tasks will be realizable with a passive teleoperator if it is sufficiently stiff and light. MR-guided interventions are a compelling application for the proposed hybrid transmission because of MR's particular constraints, which as noted above rule out many other technologies. A key question this research addresses is how to scale the promising performance of single-axis prototypes to a complex multi-axis system able to perform MR-guided procedures. The PIs will combine kinematic and dynamic analyses with user tests for ergonomics to ensure that it supports intuitive motions and provides transparent feedback while fitting inside the MR bore's constrained space. They will integrate the teleoperated system's motions with MR images via compatible sensors and imaging fiducials to provide visual feedback and prevent accidental intrusion into undesirable regions while the physician focuses on tool tip interactions. Together, the novel force-reflecting transmission, kinematic mechanism, sensors, and software constitute a cyber-human system with unprecedented capabilities. This telepresence system will be an ideal platform to expand scientific understanding of the impact that transmission transparency provides for MR-guided interventions.
磁共振成像 (MRI) 是一种广泛使用的诊断工具,可显着扩展医生的自然视力,提供无与伦比的高清视觉效果,无需电离辐射即可实现软组织病理生理学诊断、病变描绘和治疗监测。 越来越多的医生不仅希望使用 MRI 进行诊断,还希望将其用于活检或肿瘤消融等引导程序,以提高准确性。 然而,MR 孔的几何形状迫使医生站在外面并将运动和力远程传输到对内部患者进行操作的工具。 因此,尽管 MR 提供了卓越的成像,但缺乏触觉。 为了克服这一缺陷并实现远程呈现,医生需要高保真力反射远程操作系统。 MR 的强磁场带来了更多挑战;必须避免使用铁磁材料和带有电流的电子器件,甚至有色金属也会产生成像伪影,这限制了执行器、传输器和传感器的选择。 PI 在该项目中的目标是通过将实时 3D 组织成像与物理交互的动觉和力反馈相结合,使医生能够像直接与患者接触一样进行操作。 项目成果有可能直接影响大量人群,因为这里开发的高保真力传输将适用于其他图像引导干预措施,例如药物输送和超声。 混合静液压传动装置将适用于(实际上最初是为)交互式人类安全机器人;在使其适应磁共振引导干预方面取得的进步将使该技术成熟并减少尺寸和成本,这将有助于将其推向医疗机器人和双边远程操作等其他领域。 这项研究代表了机器人、触觉和介入放射学专家之间的合作。 这项工作将建立并扩展一种新型双边遥控操作器,该遥控操作器基于静液压和气动元件,配有滚动隔膜执行器,提供低惯性、无源性、高刚度和透明度以及可忽略不计的摩擦和间隙的独特组合,非常适合提供例如,MR 孔外部的医生与对内部患者进行操作的工具之间的动觉和力反馈,使医生能够感受到组织特性的变化。 如果被动式遥控操作器足够坚硬和轻便,那么灵敏、灵巧的任务就可以实现。 由于 MR 的特殊限制,MR 引导干预是所提出的混合传输的一个引人注目的应用,如上所述,这排除了许多其他技术。 这项研究解决的一个关键问题是如何将单轴原型的有前途的性能扩展到能够执行 MR 引导程序的复杂多轴系统。 PI 将运动学和动态分析与人体工程学用户测试相结合,以确保其支持直观运动并在安装到 MR 孔的受限空间内时提供透明的反馈。 他们将通过兼容的传感器和成像基准将远程操作系统的运动与 MR 图像集成,以提供视觉反馈并防止意外侵入不良区域,同时医生专注于工具提示交互。 新颖的力反射传输、运动机构、传感器和软件共同构成了一个具有前所未有能力的网络人类系统。 该远程呈现系统将成为一个理想的平台,可扩展对传输透明度对 MR 引导干预措施影响的科学理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Cutkosky其他文献

Mark Cutkosky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Cutkosky', 18)}}的其他基金

Collaborative Research: FW-HTF-P: Supporting future crisis line work through the inclusive design of worker-facing tools that empower self-management of wellbeing and performance
合作研究:FW-HTF-P:通过面向工人的工具的包容性设计来支持未来的危机热线工作,这些工具能够实现福祉和绩效的自我管理
  • 批准号:
    2128864
  • 财政年份:
    2021
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-P: Supporting future crisis line work through the inclusive design of worker-facing tools that empower self-management of wellbeing and performance
合作研究:FW-HTF-P:通过面向工人的工具的包容性设计来支持未来的危机热线工作,这些工具能够实现福祉和绩效的自我管理
  • 批准号:
    2128864
  • 财政年份:
    2021
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
NRI: Collaborative Research: Versatile Locomotion: From Walking to Dexterous Climbing with a Human-Scale Robot
NRI:协作研究:多功能运动:使用人体规模的机器人从步行到灵巧攀爬
  • 批准号:
    1525889
  • 财政年份:
    2015
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
RI: Medium: Collaborative Research: Hybrid Unmanned Aerial Vehicles that Interact with Surfaces
RI:中:协作研究:与表面交互的混合无人机
  • 批准号:
    1161679
  • 财政年份:
    2012
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
HCC: SMALL: Wearable computation and feedback for real-time movement training
HCC:SMALL:用于实时运动训练的可穿戴计算和反馈
  • 批准号:
    1017826
  • 财政年份:
    2010
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
SGER: Optimizing skin stretch for localized haptic display
SGER:优化皮肤拉伸以实现局部触觉显示
  • 批准号:
    0554188
  • 财政年份:
    2005
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
U.S.-Italy Dissertation Enhancement Research: Shape Deposition Manufacture of Mesoscale Robotic Devices
美意论文强化研究:中尺度机器人设备的形状沉积制造
  • 批准号:
    0138436
  • 财政年份:
    2002
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Supervised Dexterous Manipulation with Haptic Feedback
带触觉反馈的监督灵巧操作
  • 批准号:
    0099636
  • 财政年份:
    2001
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
Dissertation Enhancement: Dextrous Manipulation and Haptic Exploration of Unknown Objects
论文增强:未知物体的灵巧操作和触觉探索
  • 批准号:
    9724763
  • 财政年份:
    1998
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
A Design Interface for 3D Manufacturing
3D 制造设计界面
  • 批准号:
    9617994
  • 财政年份:
    1997
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant

相似国自然基金

小分子代谢物Catechin与TRPV1相互作用激活外周感觉神经元介导尿毒症瘙痒的机制研究
  • 批准号:
    82371229
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
DHEA抑制小胶质细胞Fis1乳酸化修饰减轻POCD的机制
  • 批准号:
    82301369
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SETDB1调控小胶质细胞功能及参与阿尔茨海默病发病机制的研究
  • 批准号:
    82371419
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
PTBP1驱动H4K12la/BRD4/HIF1α复合物-PKM2正反馈环路促进非小细胞肺癌糖代谢重编程的机制研究及治疗方案探索
  • 批准号:
    82303616
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CHS: Small: Collaborative Research:Dynamic Computer-Aided Machining: Supporting Interactive Workflows for Digital Fabrication and Manufacturing
CHS:小型:协作研究:动态计算机辅助加工:支持数字制造和制造的交互式工作流程
  • 批准号:
    2007094
  • 财政年份:
    2020
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
CHS: Small: Collaborative Research: Shared Mobility Systems to Address Transportation Barriers of Underserved Urban and Rural Communities
CHS:小型:合作研究:共享出行系统,解决服务不足的城乡社区的交通障碍
  • 批准号:
    1910281
  • 财政年份:
    2020
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
CHS: Small: Collaborative Research: Social Virtual Reality Technology to Improve Networked Meetings
CHS:小型:协作研究:社交虚拟现实技术改善网络会议
  • 批准号:
    2007755
  • 财政年份:
    2020
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
CHS: Small: Collaborative Research: Catalyzing Youth Civic Engagement Through Innovations in Social Computing
CHS:小型:合作研究:通过社会计算创新促进青年公民参与
  • 批准号:
    2054741
  • 财政年份:
    2020
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
CHS: Small: Collaborative Research: Optimizing the Human-Machine System for Citizen Science
CHS:小型:协作研究:优化公民科学的人机系统
  • 批准号:
    2006400
  • 财政年份:
    2020
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了