DMREF/Collaborative Research: Accelerated Soft Magnetic Alloy Design and Synthesis Guided by Theory and Simulation

DMREF/合作研究:理论和仿真引导的加速软磁合金设计与合成

基本信息

  • 批准号:
    1629026
  • 负责人:
  • 金额:
    $ 72.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

Soft magnetic materials have use in power conversion, conditioning, distribution, and generation technologies, including transportation (electric vehicles), renewable energy (solar inverters), and aerospace (power converters and inductors) sectors. The term "soft magnet" refers to a magnetic material that easily changes magnetic pole directions using small magnetic fields. With over 20 percent of all generated electricity in the US being consumed by industrial electric motor drives, a mere 1 percent improvement in energy efficiency would result in significant financial and environmental benefits. The magnetic components are a major source of energy loss in the above-mentioned applications, motivating the need for soft magnets with better energy efficiency. The design cycle for new soft magnetic materials has so far been informed mainly by direct human engineering intuition and historic knowledge and bias, with materials development occurring by trial-and-error approaches. This Designing Materials to Revolutionize and Engineer our Future (DMREF) award supports research to establish, demonstrate, and validate a computation-guided framework for accelerated discovery of new, better performing soft magnetic materials. This approach will use computational materials science tools to guide alloy design, with the synthesis and experimental validation of properties performed for down-selected new alloys.Recently, new alloys with microstructures comprised of an amorphous matrix and nanocrystalline grains have revolutionized advanced soft magnetic materials by enabling smaller hysteresis than has been achieved in traditional magnetic materials. This award supports research on the design of new alloys of this type using hierarchical, multi-scale, magneto-structural modeling with input from density functional theory calculations of structural and magnetic properties for single-crystals. Micromagnetic theory will provide the constitutive law for the continuum-level model for optimization of realistic microstructures consisting of an amorphous matrix surrounding nanocrystals. The continuum-level modeling represents a fundamental advancement that will provide much-needed insight into the interplay between the microstructure effects and the magnetic properties of the crystalline phase in determining small hysteresis, as well as an operational understanding of the applicability limits of the currently-prevalent random anisotropy model for coercivity. Structural considerations will be evaluated by continuum thermodynamics modeling and resulting magnetic performance characteristics will be evaluated by micromagnetics modeling. Down-selected alloy compositions - as optimized by these computational approaches - will be synthesized using rapid solidification with subsequent annealing and characterized using state-of-the-art structural and magnetic characterization tools.
软磁材料可用于电力转换、调节、配电和发电技术,包括交通(电动汽车)、可再生能源(太阳能逆变器)和航空航天(电力转换器和电感器)领域。术语“软磁体”是指利用小磁场容易改变磁极方向的磁性材料。美国超过 20% 的发电量由工业电机驱动器消耗,能源效率仅提高 1% 就会带来显着的财务和环境效益。磁性元件是上述应用中能量损失的主要来源,这激发了对具有更高能量效率的软磁体的需求。迄今为止,新型软磁材料的设计周期主要取决于直接的人类工程直觉、历史知识和偏见,材料开发是通过试错方法进行的。该“设计材料以彻底改变和设计我们的未来”(DMREF) 奖项支持研究建立、演示和验证计算引导框架,以加速发现性能更好的新型软磁材料。这种方法将使用计算材料科学工具来指导合金设计,并对选定的新合金进行性能合成和实验验证。最近,具有由非晶基体和纳米晶晶粒组成的微观结构的新型合金彻底改变了先进的软磁材料:与传统磁性材料相比,磁滞更小。该奖项支持使用分层、多尺度、磁结构模型以及单晶结构和磁性能的密度泛函理论计算的输入来设计此类新型合金的研究。微磁理论将为连续介质级模型提供本构定律,以优化由纳米晶体周围的非晶基体组成的实际微观结构。连续体级建模代表了一项根本性的进步,它将在确定小磁滞时提供对微结构效应和晶相磁性之间相互作用的急需洞察,以及对当前磁滞的适用性限制的操作理解。流行的矫顽力随机各向异性模型。结构考虑因素将通过连续热力学模型进行评估,所得的磁性能特征将通过微磁学模型进行评估。通过这些计算方法优化的向下选择的合金成分将使用快速凝固和随后的退火进行合成,并使用最先进的结构和磁性表征工具进行表征。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cristian Ciobanu其他文献

Cristian Ciobanu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cristian Ciobanu', 18)}}的其他基金

Significant Enhancement of Structural Integrity of Shape Memory Ceramics in High Cycle Fatigue
形状记忆陶瓷在高周疲劳中的结构完整性显着增强
  • 批准号:
    2054274
  • 财政年份:
    2021
  • 资助金额:
    $ 72.42万
  • 项目类别:
    Continuing Grant
CAREER: Structural Helicity in Ultra-Thin Alloy Nanowires
职业:超薄合金纳米线的结构螺旋性
  • 批准号:
    0846858
  • 财政年份:
    2009
  • 资助金额:
    $ 72.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Structure and Morphology of Graphene Sheets for Carbon-Based Nanoelectronics
合作研究:碳基纳米电子学用石墨烯片的结构和形貌
  • 批准号:
    0825592
  • 财政年份:
    2008
  • 资助金额:
    $ 72.42万
  • 项目类别:
    Standard Grant

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
颅颌面手术机器人辅助半面短小牵张成骨术的智能规划与交互协作研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
面向自主认知与群智协作的多智能体制造系统关键技术研究
  • 批准号:
    52305539
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模物联网多协作绿色信息感知和智慧响应决策一体化方法研究
  • 批准号:
    62371149
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
多UAV协作的大规模传感网并发充电模型及其服务机制研究
  • 批准号:
    62362017
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 72.42万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 72.42万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 72.42万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 72.42万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 72.42万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了