MRI: Development of a femtosecond angle-resolved electron spectroscopy system for mapping the 3D electronic structures and responses of functional materials and nanostructures

MRI:开发飞秒角分辨电子能谱系统,用于绘制功能材料和纳米结构的 3D 电子结构和响应

基本信息

  • 批准号:
    1625181
  • 负责人:
  • 金额:
    $ 97.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

The ability to control and engineer complex materials and nanostructures is essential for enabling an array of technologies including: solar-energy harvesting, solar to fuel conversion, heat recovery, and the development of novel photoactive nanostructured materials and nanoelectronics devices used in computing and internet infrastructure. This project will overcome widely recognized major bottlenecks to progress by addressing the scarcity of experimental data on the changes of local properties in these functional materials or devices. This is enabled by using innovative accelerator-based approaches to manipulate the probe's dynamical properties to significantly enhance the intensity and time-resolution of an ultrafast electron probe system. The high-throughput of the present system is the ideal probe for unveiling transient photochemical processes due to its high sensitivity to charge states and its more direct accesses to local electronic structures and electron dynamics for pinpointing the origins of these local, transient electronic processes. Furthermore, the present system advantageously provides three-dimensional spectroscopy by high-energy beams that penetrate the bulk of samples and the ability to sample large energy dispersion and momentum distributions. These new capabilities are also relevant to understanding an array of complex materials issues of broad interest, including studies of high-temperature superconductors, phase transitions, and novel electronic switching devices. Scientific and technological progress will be enabled by a unique team of experts in accelerator and beam physics, radiofrequency cavity design and construction, femtosecond (one quadrillionth, or one millionth of one billionth, of a second) laser and electron beam technologies, and theoretical modeling for the development of this unique ultrahigh speed electron beam system. The outcome of this MRI will be potentially transformative for addressing Grand Challenge Problems in nanoscience and nanotechnology that are critical to the industrial and applied sector, in areas ranging from catalysis to photovoltaics and material synthesis. We envision that the successful development of such a technology will lead to a new generation of electron-based ultrafast spectroscopy systems that are economical enough to be widely replicated in individual industry or university-based laboratories .A novel ultrafast high-brightness electron spectrometer system will be designed and implemented to achieve high sensitivity and combined high momentum-energy resolution through innovative active energy compression technology to preserve the throughput of the femtosecond photo-activated electron beam. The new system, a prototype ultrafast angle-resolved electron spectroscopy system, will be the first of its kind to provide element-sensitive spectroscopic imaging of three-dimensional electronic structures in complex and nanostructured materials at ultrafast timescales. The new capabilities will provide needed high throughput, and access to bulk crystalline materials. Significantly broader reach in energy scales will be available, covering the entire Brillouin Zone of quantum and complex materials with three-dimensional electronic structures, thus providing a more universal method than existing approaches. It is also targeted to substantially enhance the temporal-momentum resolution and throughput of electron-based spectroscopy systems to ultimately allow studies of individual nanostructures and motifs. The resulting spectrometer will be well-suited for characterizing; radiation effects in materials, defects, and photo-responses in plasmonic and photovoltaic nanostructures; phase transitions of superconductors and complex, strongly correlated electron materials; and exploring novel phases of matter in extreme environments. Scientific and technological progress will be enabled by a unique team of experts in accelerator and beam physics, radiofrequency cavity design and construction, femtosecond laser and electron beam technologies, and theoretical modeling for the development of this unique femtosecond electron beam system. The outcome of this MRI will be potentially transformative for investigating ultrafast physical, chemical and materials electronic processes to understand and identify the emerging and functional properties of complex, nanostructured materials and devices for addressing Grand Challenge Problems in condensed matter physics, materials and chemistry. Such a capability is also of interest to the industrial and applied sector, in areas ranging from catalysis to photovoltaics and material synthesis. It is envisioned that the successful development of such a technology will lead to a new generation of electron-based ultrafast spectroscopy systems that are economical enough to be widely replicated in individual industrial or university-based laboratories for ultrafast materials research.
控制和设计复杂材料和纳米结构的能力对于实现一系列技术至关重要,包括:太阳能收获,太阳能到燃料转换,热恢复以及新颖的光活性纳米结构材料和用于计算和互联网基础结构的纳米电子设备的开发。该项目将通过解决有关这些功能材料或设备中局部特性变化的实验数据的稀缺性来克服广泛认识的主要瓶颈。 通过使用创新加速器的方法来操纵探针的动力学特性,从而显着增强了超快电子探针系统的强度和时间分辨率。 由于其对电荷状态的高灵敏度以及对局部电子结构和电子动力学的更直接访问,目前,本系统的高通量是揭示瞬时光化学过程的理想探针,用于确定这些局部瞬态电子过程的起源。 此外,当前系统通过高能梁渗透到大部分样品以及品尝大型能量分散和动量分布的能力方面有利地提供了三维光谱。 这些新功能也与了解一系列复杂的材料问题有关,包括对高温超导体,相变和新型电子开关设备的研究。科学和技术进步将由一个独特的加速器和光束物理学专家团队,射频腔设计和构造,fomtsecond(四千亿分之一或十亿分之一,第二秒)激光器和电子束技术,以及该独特的超级电子束系统开发的理论建模。该MRI的结果将具有潜在的变革性,以解决对工业和应用部门至关重要的纳米科学和纳米技术的巨大挑战问题,从催化到光伏和材料合成。我们设想,这种技术的成功开发将导致新一代基于电子的超快光谱系统,这些系统足够经济,可以在个别行业或基于大学的实验室中广泛复制。一种新型的超快高亮度电子光谱仪系统将经过设计和实现,以实现高敏感性和高度敏感性,并实现高度敏感性的无效技术,以确保高敏感性的技术,以使高敏锐的技术能够通过良好的效果来实现高度敏感性,从而能够实现高敏感性的技术,从而能够实现高度敏感性的技术,从而能够实现高度敏感性的技术。电子束。新系统是一种原型超快角度分辨的电子光谱系统,将是第一个在超额叶时间尺度上在复杂和纳米结构材料中提供三维电子结构的元素敏感的光谱成像。新功能将提供所需的高通量,并使用散装晶体材料。将提供能量尺度的更广泛的范围,涵盖具有三维电子结构的整个量子和复杂材料的整个布里群区,因此提供了一种比现有方法更通用的方法。 它还针对基于电子光谱系统的颞粒分辨率和吞吐量,最终允许对单个纳米结构和基序进行研究。最终的光谱仪将非常适合表征。等离子和光伏纳米结构的材料,缺陷和光响应的辐射效应;超导体和复杂,密切相关的电子材料的相变;并在极端环境中探索物质的新阶段。科学和技术进步将由一个独特的加速器和梁物理专家团队,射频腔设计和构造,Quemtsecond Laser和Electron Beam Technologies以及为开发这种独特的femtsosecond电子束系统开发的理论建模。该MRI的结果将具有潜在的转化性,用于研究超快的物理,化学和材料电子过程,以理解和识别复杂,纳米结构材料和设备的新兴和功能性能,以解决凝聚态物理,材料,材料和化学中的巨大挑战问题。从催化到光伏和材料合成的地区,这种能力也引起了工业和应用领域的关注。可以预见的是,这种技术的成功开发将导致新一代基于电子的超快光谱系统,这些光谱系统足够经济,可以在个人工业或大学实验室中广泛复制以进行超快材料研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chong-Yu Ruan其他文献

Molecular imaging at 1-femtosecond resolution
  • DOI:
    10.1126/science.aai8656
  • 发表时间:
    2016-10
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Chong-Yu Ruan
  • 通讯作者:
    Chong-Yu Ruan

Chong-Yu Ruan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chong-Yu Ruan', 18)}}的其他基金

MRI:Development of a femtosecond high brightness electron beam source for time-resolved electron diffraction and imaging
MRI:开发用于时间分辨电子衍射和成像的飞秒高亮度电子束源
  • 批准号:
    1126343
  • 财政年份:
    2011
  • 资助金额:
    $ 97.19万
  • 项目类别:
    Standard Grant
Collaborative Research: FRG: Beyond Crystallography: structure of nanostructured materials
合作研究:FRG:超越晶体学:纳米结构材料的结构
  • 批准号:
    0703940
  • 财政年份:
    2007
  • 资助金额:
    $ 97.19万
  • 项目类别:
    Continuing Grant

相似国自然基金

剪接因子SNRPA1通过调节R-loop稳态影响肺腺癌发展进程的机制研究
  • 批准号:
    32360143
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
GGPP变构激活FBP1偶联葡萄糖代谢和胆固醇合成途径抑制NAFL-NASH发展的机制研究
  • 批准号:
    32371366
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
企业层面视角下自由贸易协定条款深度对出口高质量发展的影响:模型拓展与量化分析
  • 批准号:
    72363013
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
新型城镇化与区域协调发展的机制与治理体系研究
  • 批准号:
    72334006
  • 批准年份:
    2023
  • 资助金额:
    167 万元
  • 项目类别:
    重点项目
亦正亦邪Sirt6:Sirt6调控谷氨酰胺代谢促进肝内胆管癌发生发展的分子机制研究
  • 批准号:
    82372667
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

MRI Consortium: Development of Sample Delivery Instrument for Femtosecond Diffraction Studies
MRI 联盟:开发用于飞秒衍射研究的样品传输仪器
  • 批准号:
    1625906
  • 财政年份:
    2016
  • 资助金额:
    $ 97.19万
  • 项目类别:
    Standard Grant
MRI: Development of a Mid-infrared Optical Microscope for Investigation of Femtosecond Dynamics of Single Large Spin Orbit Semiconductor Heterostrucutures
MRI:开发中红外光学显微镜,用于研究单大自旋轨道半导体异质结构的飞秒动力学
  • 批准号:
    1531373
  • 财政年份:
    2015
  • 资助金额:
    $ 97.19万
  • 项目类别:
    Standard Grant
MRI: Development of a Femtosecond Scattering SFG Instrument
MRI:飞秒散射 SFG 仪器的开发
  • 批准号:
    1125791
  • 财政年份:
    2011
  • 资助金额:
    $ 97.19万
  • 项目类别:
    Standard Grant
MRI:Development of a femtosecond high brightness electron beam source for time-resolved electron diffraction and imaging
MRI:开发用于时间分辨电子衍射和成像的飞秒高亮度电子束源
  • 批准号:
    1126343
  • 财政年份:
    2011
  • 资助金额:
    $ 97.19万
  • 项目类别:
    Standard Grant
MRI: RAPID: Development: Spectrally resolved, ultrafast and simultaneous measurements of methane and carbon dioxide in sea waters with femtosecond supercontinuum fiber laser
MRI:RAPID:开发:使用飞秒超连续光纤激光器对海水中的甲烷和二氧化碳进行光谱分辨、超快和同步测量
  • 批准号:
    1058510
  • 财政年份:
    2010
  • 资助金额:
    $ 97.19万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了