Collaborative Research: FRG: Beyond Crystallography: structure of nanostructured materials
合作研究:FRG:超越晶体学:纳米结构材料的结构
基本信息
- 批准号:0703940
- 负责人:
- 金额:$ 52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-01 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical abstract:A holy grail of nanotechnology is to design and build a material with some desirable property by engineering the atomic structure at the nanoscale. A huge impediment to this is the nanostructure problem: the fact that the established quantitative methods for determining atomic structure fail for nano-sized objects. This project addresses this problem with a collaboration of experiment and theory. The experiments utilize the intense beams of x-rays and neutrons available at US national user facilities combined with novel computational approaches for extracting reliable structural information from the data. In addition the local structure of intermediate states will be studied using ultra-fast femtosecond time-resolved electron diffraction, coupled to the same computational infrastructure, allowing us for the first time to probe quantitatively the local structure of excited states of nanoparticles. In this study a number of scientifically and technologically interesting materials will be studied, including quantum-dot nanoparticles and phase-change materials used in writable CD and DVDs. However, the theoretical and methodological developments will be made available to the wider scientific and educational community in the form of freely available software so the methods can be widely applied. In addition to training graduate and undergraduate students in state-of-the-art research, nanotechnology will be taken to the classroom in grades 6-12 and new hands-on nanotechnology modules will be built in collaboration with Everett High School, an inner city Lansing high school. A new curriculum and course content for an AP course will be developed with their active participation. This project is co-supported by the Condensed Matter Physics and Solid State Chemistry programs.Technical abstract:A holy grail of nanotechnology is to design and build a material with desirable properties by engineering the atomic structure at the nanoscale. A huge impediment to this is the nanostructure problem: the fact that the established quantitative methods for determining atomic structure fail for nano-sized objects. This collaborative project addresses this by using novel approaches for analyzing and modeling x-ray and neutron scattering data from nanomaterials. The data will be Fourier transformed to obtain the atomic pair distribution function (PDF) which will be modeled using novel approaches that will be developed such as encoding chemical information as geometrical constraints in the model. The analysis will be extended to electron diffraction data and combined with ultrafast techniques to study local structure quantitatively on femtosecond time-scales. The systems under study include novel electronic and optical materials such as low-dimensional charge-density wave tellurides, quantum-dot nanoparticles and phase change materials that are used in writable CDs and DVDs. The methods developed here will be made available to the broad community of nanotechnology scientists through training and free software. In addition to training graduate and undergraduate students in state-of-the-art research, nanotechnology will be taken to the classroom in grades 6-12 and new hands-on nanotechnology modules will be built in collaboration with Everett High School, an inner city Lansing high school. A new curriculum and course content for an AP course will be developed with their active participation. This project is co-supported by the Condensed Matter Physics and Solid State Chemistry programs.
非技术摘要:纳米技术的圣杯是通过在纳米级的原子结构上设计和建造具有一些理想特性的材料。 对此的巨大障碍是纳米结构问题:确定纳米尺寸对象的确定原子结构的已建立定量方法的事实。 该项目通过实验和理论的合作解决了这个问题。 这些实验利用了美国国家用户设施可用的X射线和中子的强烈光束,并结合了从数据中提取可靠的结构信息的新型计算方法。 此外,将使用超快秒的时间分辨的电子衍射研究中间状态的局部结构,并耦合到同一计算基础设施,从而使我们首次定量探测纳米颗粒激发态的局部结构。在这项研究中,将研究许多科学和技术上有趣的材料,包括量子点纳米颗粒和写入CD和DVD中使用的相位变化材料。 但是,理论和方法论发展将以可自由使用的软件的形式向更广泛的科学和教育社区提供,因此可以广泛应用这些方法。除了培训最先进的研究的培训毕业生和本科生外,纳米技术还将以6至12年级的培训学习,并将与内城市兰斯市的兰斯高中(Lansing High School)合作建立新的动手纳米技术模块。将开发新的AP课程课程和课程内容,并积极参与。该项目由凝聚的物理和固态化学计划共同支持。技术摘要:纳米技术的圣杯是通过在纳米级的原子结构上设计和建造具有理想特性的材料。 对此的巨大障碍是纳米结构问题:确定纳米尺寸对象的确定原子结构的已建立定量方法的事实。 该协作项目通过使用新颖的方法来分析和建模纳米材料的X射线和中子散射数据来解决这一问题。 数据将进行傅立叶转换,以获得原子对分布函数(PDF),该函数将使用新型方法进行建模,例如将化学信息编码为模型中的几何约束。该分析将扩展到电子衍射数据,并与超快技术相结合,以在飞秒时间尺度上定量研究局部结构。所研究的系统包括新型的电子和光学材料,例如低维电荷波豪属,量子点纳米颗粒以及可写的CD和DVD中使用的相变材料。 此处开发的方法将通过培训和免费软件提供给广泛的纳米技术科学家社区。除了培训最先进的研究的培训毕业生和本科生外,纳米技术还将以6至12年级的培训学习,并将与内城市兰斯市的兰斯高中(Lansing High School)合作建立新的动手纳米技术模块。将开发新的AP课程课程和课程内容,并积极参与。 该项目由凝聚态物理和固态化学计划共同支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chong-Yu Ruan其他文献
Molecular imaging at 1-femtosecond resolution
- DOI:
10.1126/science.aai8656 - 发表时间:
2016-10 - 期刊:
- 影响因子:56.9
- 作者:
Chong-Yu Ruan - 通讯作者:
Chong-Yu Ruan
Chong-Yu Ruan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chong-Yu Ruan', 18)}}的其他基金
MRI: Development of a femtosecond angle-resolved electron spectroscopy system for mapping the 3D electronic structures and responses of functional materials and nanostructures
MRI:开发飞秒角分辨电子能谱系统,用于绘制功能材料和纳米结构的 3D 电子结构和响应
- 批准号:
1625181 - 财政年份:2016
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
MRI:Development of a femtosecond high brightness electron beam source for time-resolved electron diffraction and imaging
MRI:开发用于时间分辨电子衍射和成像的飞秒高亮度电子束源
- 批准号:
1126343 - 财政年份:2011
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 52万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 52万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 52万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 52万 - 项目类别:
Standard Grant