Obstructions to positive curvature and symmetry
正曲率和对称性的障碍
基本信息
- 批准号:1622541
- 负责人:
- 金额:$ 4.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-10-15 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS 1404670, Principal Investigator: Lee Kennard, Guofang WeiThe curvature of a manifold is an attempt to quantify the ways that a space may bend, beginning with the Euclidean plane, whose flatness is captured by declaring the plane to have zero curvature. The two-dimensional round sphere in three-dimensional space has positive curvature, of a size that reflects the sense that as one traverses a sphere of large radius, its tangent plane turns more slowly in space than the tangent plane to a sphere of smaller radius: the sphere of radius R has curvature 1/R^2. Manifolds of curvature greater than or equal to zero have been an active area of study for many years, with most known examples produced by imposing some amount of symmetry, with the sphere and its large group of rotations being the most symmetric example.These research projects bring homotopy-theoretic tools into the approach of Grove and Ziller to the study of Riemannian manifolds of non-negative curvature. Some of the questions to be studied follow on well-known theorems and conjectures of Adem, Adams, and Chern. In particular, a generalization is suggested of Adams' theorem on singly-generated cohomology rings and generalizations in the presence of symmetry for Chern's problem on the fundamental groups of positively curved manifolds are considered.
Abstractaward:DMS 1404670,主要研究人员:lee Kennard,Guofang Weithe curvature a Prisold的曲率是一种尝试量化空间可能弯曲的方式,从欧几里得平面开始,其平坦度是通过宣布平面为零曲率的稳定性。 三维空间中的二维圆形球体具有正曲率,其大小反映了一种感觉,即当一个人穿越较大半径的球体时,其切线平面在空间中的变化比切线平面慢于较小半径的球体:半径r的球体r radius r的球体具有曲率1/r^2。 Manifolds of curvature greater than or equal to zero have been an active area of study for many years, with most known examples produced by imposing some amount of symmetry, with the sphere and its large group of rotations being the most symmetric example.These research projects bring homotopy-theoretic tools into the approach of Grove and Ziller to the study of Riemannian manifolds of non-negative curvature. 众所周知的定理和Adem,Adams和Chern的猜想遵循的一些问题。 特别是,考虑到在存在对称性的对称性问题上,在Chern在存在对称性的情况下,考虑了Adams对单一生成的共同体学环和概括的概括。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fundamental Groups of Manifolds with Positive Sectional Curvature and Torus Symmetry
- DOI:10.1007/s12220-017-9787-2
- 发表时间:2017-03
- 期刊:
- 影响因子:0
- 作者:Lee Kennard
- 通讯作者:Lee Kennard
On a generalized conjecture of Hopf with symmetry
关于具有对称性的广义 Hopf 猜想
- DOI:10.1112/s0010437x16008150
- 发表时间:2017
- 期刊:
- 影响因子:1.8
- 作者:Amann, Manuel;Kennard, Lee
- 通讯作者:Kennard, Lee
Positive weighted sectional curvature
- DOI:10.1512/iumj.2017.66.6013
- 发表时间:2014-10
- 期刊:
- 影响因子:0
- 作者:Lee Kennard;W. Wylie
- 通讯作者:Lee Kennard;W. Wylie
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lee Kennard其他文献
On the Hopf conjectures with symmetry
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Lee Kennard - 通讯作者:
Lee Kennard
Positive curvature and rational ellipticity
正曲率和有理椭圆率
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Manuel Amann;Lee Kennard - 通讯作者:
Lee Kennard
On the Hopf conjecture with symmetry
- DOI:
10.2140/gt.2013.17.563 - 发表时间:
2012-03 - 期刊:
- 影响因子:2
- 作者:
Lee Kennard - 通讯作者:
Lee Kennard
Positively curved metrics on symmetric spaces with large symmetry rank
- DOI:
- 发表时间:
2012-09 - 期刊:
- 影响因子:0
- 作者:
Lee Kennard - 通讯作者:
Lee Kennard
Geometry of Manifolds with Non-negative Sectional Curvature
非负截面曲率流形的几何形状
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Owen Dearricott;R. Herrera;L. H. Lamoneda;F. Galaz‐García;Lee Kennard;C. Searle;G. Weingart;W. Ziller - 通讯作者:
W. Ziller
Lee Kennard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lee Kennard', 18)}}的其他基金
Connected Isotropy Groups in the Grove Symmetry Program
Grove 对称程序中的连通各向同性群
- 批准号:
2005280 - 财政年份:2020
- 资助金额:
$ 4.73万 - 项目类别:
Standard Grant
Australian-German Workshop on Differential Geometry in the Large
澳大利亚-德国大微分几何研讨会
- 批准号:
1855960 - 财政年份:2019
- 资助金额:
$ 4.73万 - 项目类别:
Standard Grant
Curvature, Symmetry, and Periodic Cohomology
曲率、对称性和周期上同调
- 批准号:
1904354 - 财政年份:2018
- 资助金额:
$ 4.73万 - 项目类别:
Standard Grant
Curvature, Symmetry, and Periodic Cohomology
曲率、对称性和周期上同调
- 批准号:
1708493 - 财政年份:2017
- 资助金额:
$ 4.73万 - 项目类别:
Standard Grant
Obstructions to positive curvature and symmetry
正曲率和对称性的障碍
- 批准号:
1404670 - 财政年份:2014
- 资助金额:
$ 4.73万 - 项目类别:
Standard Grant
相似国自然基金
脊髓电刺激活化Na(V)1.1阳性GABA神经元持续缓解癌痛
- 批准号:82371223
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
CD8+T细胞亚群在抗MDA5抗体阳性皮肌炎中的致病机制研究
- 批准号:82371805
- 批准年份:2023
- 资助金额:45.00 万元
- 项目类别:面上项目
最优区分视角下内外部社会责任不一致的影响因素及其对企业的积极影响研究
- 批准号:72302070
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
内容创意平台中用户积极和消极反馈与创作者效能间关系的研究:基于认知和认同的双路径模型
- 批准号:72302250
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
数字经济时代股东积极主义的制度创新、治理效应与机制研究
- 批准号:72372103
- 批准年份:2023
- 资助金额:41.00 万元
- 项目类别:面上项目
相似海外基金
The geometry, rigidity and combinatorics of spaces and groups with non-positive curvature feature
具有非正曲率特征的空间和群的几何、刚度和组合
- 批准号:
2305411 - 财政年份:2023
- 资助金额:
$ 4.73万 - 项目类别:
Standard Grant
LEAPS-MPS: Geometrization with Positive Curvature
LEAPS-MPS:具有正曲率的几何化
- 批准号:
2316659 - 财政年份:2023
- 资助金额:
$ 4.73万 - 项目类别:
Standard Grant
Rigidity and Boundaries in Non-Positive Curvature
非正曲率的刚度和边界
- 批准号:
2204339 - 财政年份:2022
- 资助金额:
$ 4.73万 - 项目类别:
Standard Grant
Normalized Betti Numbers, Non-Positive Curvature, and the Singer Conjecture
归一化贝蒂数、非正曲率和辛格猜想
- 批准号:
2104662 - 财政年份:2021
- 资助金额:
$ 4.73万 - 项目类别:
Standard Grant