LEAPS-MPS: Geometrization with Positive Curvature
LEAPS-MPS:具有正曲率的几何化
基本信息
- 批准号:2316659
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
A fundamental theme in geometry is to study the relationship between the curvature and the shape of the space. This project will investigate in dimensions four and higher how “positivity curvature” determines, partially or in full, the global shape of the underlying space, aiming to extend the famous Gauss-Bonnet Theorem in dimension two and Hamilton and Perelman’s work on geometrization in dimension three to higher dimensions. In this project, the PI will expand the study of geometrization to manifolds of dimensions four and higher, making use of tools such as curvature operators and Ricci flows. In addition, the PI will organize a variety of activities for middle and high school students in the local Wichita area and engage in mentoring programs for undergraduate and graduate students at Wichita State University aimed at broadening participation, especially amongst underrepresented minority students. The research objective of this project is to investigate the classification of four and higher-dimensional spaces, including compact Riemannian manifolds, Einstein manifolds, and shrinking gradient Ricci solitons, whose curvature satisfies a positivity condition, such as positive isotropic curvature, positive sectional curvature, positive Ricci curvature, and positive curvature operator of the second kind. The outcome is a better understanding of the relationship between curvature and topology. Primary strategies include analyzing solutions to the Ricci flow, applying the maximum principle to partial differential equations satisfied by geometric quantities, and understanding the relationship between various notions of positive curvature via tensor algebra and Lie algebra.This project is jointly funded by the Launching Early-Career Academic Pathways in the Mathematical and Physical Sciences (LEAPS) and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几何学的一个基本主题是研究曲率和空间形状之间的关系。该项目将在“阳性曲率”中的四个及更高的方面进行调查,以部分或完整地确定基础空间的全球形状,旨在将著名的高斯 - 邦网定理扩展在二维维度上,汉密尔顿和佩雷尔曼在维度上的几何作用到三个维度。在这个项目中,PI将使用曲率运算符和Ricci流等工具,将几何学的研究扩展到尺寸四个及更高尺寸的流形。此外,PI将为当地威奇托地区的中学学生和高中生组织各种活动,并为威奇托州立大学的本科生和研究生进行心理计划,旨在扩大参与的参与,尤其是在代表性不足的少数群体中。 The research objective of this project is to Investigate the classification of four and higher-dimensional spaces, including compact Riemannian manifolds, Einstein manifolds, and shrinking gradient Ricci solidons, whose curvature satisfies a positive condition, such as positive isotropic curvature, positive sectional curvature, positive Ricci curvature, and positive curvature operator of the second kind.结果是更好地理解曲率与拓扑之间的关系。主要策略包括分析RICCI流量的解决方案,将最大原则应用于通过几何数量满足的部分微分方程,并了解通过张量代数和谎言代数的积极弯曲的各种音符之间的关系。该项目由该项目共同资助了由刺激和物理学的早期研究(Leagical和物理学)(Leaical ofdersion)(Leeps)(Leeps)(Leeps)(Leeps)(Leagical inthematival of)(Leeps)(Leeps)(Leeps)的(Leeps)(促进)的基金(反映了NSF的法定任务,并通过使用基金会的知识分子和更广泛的影响审查标准评估来诚实地表示支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaolong Li其他文献
A general volume-parameterized market making framework
通用成交量参数化做市框架
- DOI:
10.1145/2600057.2602900 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Jacob D. Abernethy;Rafael M. Frongillo;Xiaolong Li;Jennifer Wortman Vaughan - 通讯作者:
Jennifer Wortman Vaughan
Numerical simulation of temporarily plugging staged fracturing (TPSF) based on cohesive zone method
基于粘性带法的暂堵分段压裂数值模拟
- DOI:
10.1016/j.compgeo.2020.103453 - 发表时间:
2020-05 - 期刊:
- 影响因子:5.3
- 作者:
Jianxiong Li;Shiming Dong;Wen Hua;Xiaolong Li;Tiankui Guo - 通讯作者:
Tiankui Guo
A Superlattice-Stabilized Layered CuS Anode for High-Performance Aqueous Zinc-Ion Batteries
用于高性能水系锌离子电池的超晶格稳定层状 CuS 阳极
- DOI:
10.1021/acsnano.1c05725 - 发表时间:
2021 - 期刊:
- 影响因子:17.1
- 作者:
Jiaqian Zhang;Qi Lei;Zhiguo Ren;Xiaohui Zhu;Ji Li;Zhao Li;Shilei Liu;Yiran Ding;Zheng Jiang;Jiong Li;Yaobo Huang;Xiaolong Li;Xingtai Zhou;Yong Wang;Daming Zhu;Mengqi Zeng;Lei Fu - 通讯作者:
Lei Fu
Effects of Hot Rolling and Annealing Temperature on Microstructure and Tensile Properties of a Zr-containing Ni-based ODS Superalloy
热轧和退火温度对含Zr镍基ODS高温合金组织和拉伸性能的影响
- DOI:
10.1016/j.jallcom.2022.165625 - 发表时间:
2022-05 - 期刊:
- 影响因子:6.2
- 作者:
Li Yu;Zheng Lu;Shibo Peng;Xiaolong Li - 通讯作者:
Xiaolong Li
Dual-function redox mediator enhanced lithium-oxygen battery based on polymer electrolyte
基于聚合物电解质的双功能氧化还原介质增强锂氧电池
- DOI:
10.1016/j.jmst.2021.10.009 - 发表时间:
2022-01 - 期刊:
- 影响因子:10.9
- 作者:
Muhammad Mushtaq;Xianwei Guo;Zihe Zhang;Zhiyuan Lin;Xiaolong Li;Zhangquan Peng;Haijun Yu - 通讯作者:
Haijun Yu
Xiaolong Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Mps1磷酸化RPA2增强ATR介导的DNA损伤修复促进高级别浆液性卵巢癌PARP抑制剂耐药的机制研究
- 批准号:82303896
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合MPS与GAN的复杂地质结构三维重建方法研究
- 批准号:42372341
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
PS-MPs环境暴露干扰甲状腺—棕色脂肪对话引发糖脂代谢紊乱的作用及机制研究
- 批准号:82370847
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高效求解破损船舶运动问题的势流-MPS耦合数值方法研究
- 批准号:52101371
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
HIF-1α介导SOX17抑制纺锤体装配检查点相关基因Mps1调控滋养细胞功能的机制研究
- 批准号:82101760
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
- 批准号:
2402099 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Fellowship Award
生理機能を再現するオルガノイド融合型MPSデバイスの開発
开发再现生理功能的类器官融合 MPS 装置
- 批准号:
23K26472 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
ヒト脳関門の統合評価システムBrain-MPSの構築
人脑屏障综合评价系统Brain-MPS的构建
- 批准号:
24K18340 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
LEAPS-MPS: Fast and Efficient Novel Algorithms for MHD Flow Ensembles
LEAPS-MPS:适用于 MHD 流系综的快速高效的新颖算法
- 批准号:
2425308 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
LEAPS-MPS: Network Statistics of Rupturing Foams
LEAPS-MPS:破裂泡沫的网络统计
- 批准号:
2316289 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant