Colloidal Atomic Layer Deposition (c-ALD): quest for atomic precision in nanomaterial synthesis
胶体原子层沉积 (c-ALD):追求纳米材料合成中的原子精度
基本信息
- 批准号:1611331
- 负责人:
- 金额:$ 42.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-15 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nanomaterials, small particles consisting of only several thousand atoms and of only a few billionths of a meter in diameter, offer many opportunities for transformative science and technological applications. However, the lack of atomic precision during fabrication of nanometer-sized crystals restricts the ability to harness all the power of this broad and diverse class of materials. For example, a collection of real nanoparticles is always non-uniform and comprises particles with some variation in size within the group. Dr. Talapin is investigating how to eliminate this size variation and enable atomic precision in synthesis of nanoscale materials. Many practical applications, from flat-panel televisions to photodetectors and solar cells, will benefit from highly uniform, nearly atomically precise nanomaterials. Dr. Talapin is developing a technique called colloidal atomic layer deposition (c-ALD) to control the solution-based synthesis of nanomaterials using a sequence of two complementary self-limiting surface reactions. This concept is inspired by the success of gas-phase atomic layer deposition (ALD), which is widely used in microelectronics and other fields. Dr. Talapin's research has broader societal impact since it is directly relevant to the development of new technologically-relevant materials and has the potential to solve a fundamental problem that limits the pace of development for this broad class of materials. Dr. Talapin mentors undergraduate and high school students by helping them gain research experience. An important aspect of his outreach program focuses on education enrichment via science clubs and science nights for the local underrepresented African-American and Hispanic K-12 populations on Chicago's South Side. This project also supports the development and distribution of nanoscience educational resources accessible to the general public on the Talapin Lab website at the University of Chicago. Dr. Talapin of the University of Chicago is supported by the Supramolecular and Nanochemistry (MSN) Program to develop colloidal atomic layer deposition (c-ALD) of nanoscaled materials with precise size dispersion. The project aims to eliminate inhomogeneous ensemble broadening by growing functional nanomaterials in a layer-by-layer fashion, starting from atomically defined clusters of different technologically important materials. The polydispersity of nanomaterials originates from a weak size dependence of the free energy related to the addition or removal of individual atoms to/from a nanoscale object. In this case, size distribution can only be controlled by kinetic factors. Both theoretical modeling and numerous experimental studies show that it would be difficult to improve homogeneity significantly by only kinetically controlling reaction products. Dr. Talapin is working on a paradigm-shifting approach for colloidal synthesis of nanomaterials with minimal, ideally no, size distribution. The goal is to establish means to thermodynamically control nanomaterials synthesis using a sequence of two complementary self-limiting surface reactions. This concept is inspired by the success of gas-phase atomic layer deposition (ALD) widely used in microelectronics and other fields. Preliminary studies show that the ALD concept can be implemented in solution and, when applied to colloidal nanomaterials, enables layer-by-layer growth of crystalline lattices with close to atomic precision. Eliminating polydispersity at the ensemble level is arguably one of the most important challenges in nanomaterial synthesis. One can draw an analogy between size distribution of nanomaterials and the polydispersity index (PDI) of polymers. The discovery of advanced living polymerization techniques, which nearly eliminate chain polydispersity, has been among the most important recent developments in macromolecular chemistry. Dr. Talapin incorporates activities with broader societal impact into his research program. He actively trains undergraduate and high school students in his lab by giving them research experience opportunities. He also develops course modules and nanoscience educational resources applicable to K-12 students which are accessible to the general public on the Talapin Lab website at the University of Chicago. These hands-on labs and experiments are also used in outreach and education enrichment events for the local underrepresented African-American and Hispanic K-12 populations in on Chicago's South Side.
纳米材料是仅由数千个原子组成、直径仅为十亿分之几米的小颗粒,为变革性的科学和技术应用提供了许多机会。然而,纳米晶体制造过程中原子精度的缺乏限制了利用这种广泛而多样化的材料的所有能力的能力。例如,真实纳米颗粒的集合总是不均匀的,并且包含组内尺寸有一些变化的颗粒。 Talapin 博士正在研究如何消除这种尺寸变化并在纳米级材料的合成中实现原子精度。从平板电视到光电探测器和太阳能电池,许多实际应用都将受益于高度均匀、接近原子精度的纳米材料。 Talapin 博士正在开发一种称为胶体原子层沉积 (c-ALD) 的技术,通过一系列互补的自限性表面反应来控制纳米材料的溶液合成。这一概念的灵感来自气相原子层沉积(ALD)的成功,该技术广泛应用于微电子和其他领域。 Talapin 博士的研究具有更广泛的社会影响,因为它与新技术相关材料的开发直接相关,并且有可能解决限制此类材料发展速度的基本问题。塔拉平博士通过帮助本科生和高中生获得研究经验来指导他们。他的外展计划的一个重要方面是通过科学俱乐部和科学之夜为芝加哥南区当地代表性不足的非裔美国人和西班牙裔 K-12 人群提供丰富的教育。该项目还支持开发和分发纳米科学教育资源,供公众在芝加哥大学 Talapin 实验室网站上访问。芝加哥大学的 Talapin 博士在超分子和纳米化学 (MSN) 计划的支持下,开发具有精确尺寸分散的纳米级材料的胶体原子层沉积 (c-ALD)。该项目旨在通过从不同技术重要材料的原子定义簇开始,以逐层方式生长功能纳米材料,消除不均匀系综展宽。纳米材料的多分散性源于与纳米级物体中单个原子的添加或去除相关的自由能的弱尺寸依赖性。在这种情况下,尺寸分布只能通过动力学因素来控制。理论模型和大量实验研究表明,仅通过动力学控制反应产物很难显着提高均匀性。 Talapin 博士正在研究一种范式转换方法,用于胶体合成具有最小尺寸分布(理想情况下没有尺寸分布)的纳米材料。目标是建立使用一系列互补的自限制表面反应来热力学控制纳米材料合成的方法。这一概念的灵感来自广泛应用于微电子和其他领域的气相原子层沉积(ALD)的成功。初步研究表明,ALD 概念可以在溶液中实现,并且当应用于胶体纳米材料时,可以实现接近原子精度的晶格逐层生长。消除整体水平的多分散性可以说是纳米材料合成中最重要的挑战之一。我们可以将纳米材料的尺寸分布与聚合物的多分散指数(PDI)进行类比。先进的活性聚合技术的发现几乎消除了链多分散性,是高分子化学领域最重要的最新发展之一。塔拉平博士将具有更广泛社会影响的活动纳入他的研究计划。 他在实验室积极培训本科生和高中生,为他们提供研究体验机会。他还开发了适用于 K-12 学生的课程模块和纳米科学教育资源,公众可以在芝加哥大学 Talapin 实验室网站上访问这些资源。这些实践实验室和实验还用于为芝加哥南区当地代表性不足的非裔美国人和西班牙裔 K-12 人群开展外展和教育丰富活动。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bright trion emission from semiconductor nanoplatelets
半导体纳米片的明亮三重离子发射
- DOI:10.1103/physrevmaterials.4.056006
- 发表时间:2020-05-15
- 期刊:
- 影响因子:3.4
- 作者:Lintao Peng;M. Otten;A. Hazarika;I. Coropceanu;M. Cygorek;G. Wiederrecht;P. Hawrylak;D. Talapin;Xuedan Ma
- 通讯作者:Xuedan Ma
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dmitri Talapin其他文献
Active learning of polarizable nanoparticle phase diagrams for the guided design of triggerable self-assembling superlattices
- DOI:
10.1039/d1me00187f - 发表时间:
2022-01 - 期刊:
- 影响因子:3.6
- 作者:
Siva Dasetty;Igor Coropceanu;Joshua Portner;Jiyuan Li;Juan J. de Pablo;Dmitri Talapin;Andrew L. Ferguson - 通讯作者:
Andrew L. Ferguson
New routes to control nanoparticle synthesis: general discussion
- DOI:
10.1039/c5fd90050f - 发表时间:
2015-07 - 期刊:
- 影响因子:3.4
- 作者:
Javier Reguera;Leonardo Scarabelli;Christophe Petit;Raghavender Siramdas;Heiko Wolf;Munish Chanana;Xiaoying Liu;Matthew Martin;Moritz Tebbe;Xiao-Min Lin;Lucio Isa;Helmuth Moehwald;Peter Schurtenberger;Orlin Velev;Yangwei Liu;Abdel Rahman Abdel Fattah;Ali Bumajdad;Dhanavel Ganeshan;Damien Faivre;Fernando Bresme;Christopher Sorensen;Pablo Guimera Coll;Suvojit Ghosh;Andreas Fery;Fadwa El Haddassi;K. Michael Salerno;Christina Graf;M. Fernanda Cardinal;David Schiffrin;Zhihai Li;Elena Shevchenko;Toshiharu Teranishi;Zhang Shubiao;Dmitri Talapin;A. Paul Alivisatos;Etienne Duguet;Albert Philipse;Emanuela Bianchi;Roman Latsuzbaia - 通讯作者:
Roman Latsuzbaia
Dmitri Talapin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dmitri Talapin', 18)}}的其他基金
CCI Phase 1: NSF Center for MXenes Synthesis, Tunability and Reactivity (M-STAR)
CCI 第一阶段:NSF MXene 合成、可调性和反应性中心 (M-STAR)
- 批准号:
2318105 - 财政年份:2023
- 资助金额:
$ 42.02万 - 项目类别:
Standard Grant
Molten Inorganic Salts as Solvents and Reactive Media for Colloidal and Solid-State Chemistry of Low-Dimensional Materials
熔融无机盐作为低维材料胶体和固态化学的溶剂和反应介质
- 批准号:
2004880 - 财政年份:2020
- 资助金额:
$ 42.02万 - 项目类别:
Standard Grant
Fundamental Insights into Direct Optical Lithography of Functional Inorganic Nanomaterials (DOLFIN)
功能无机纳米材料直接光学光刻的基本见解 (DOLFIN)
- 批准号:
1905290 - 财政年份:2019
- 资助金额:
$ 42.02万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: Tackling Disorder and Ensemble Broadening in Materials Made of Semiconductor Nanostructures
DMREF:合作研究:解决半导体纳米结构材料中的无序和系综展宽
- 批准号:
1629601 - 财政年份:2016
- 资助金额:
$ 42.02万 - 项目类别:
Standard Grant
Colloids in molten inorganic salts and liquid metals
熔融无机盐和液态金属中的胶体
- 批准号:
1611371 - 财政年份:2016
- 资助金额:
$ 42.02万 - 项目类别:
Standard Grant
Colloidal III-V Nanomaterials: New Opportunities in Chemistry and Device Applications
胶体 III-V 纳米材料:化学和器件应用的新机遇
- 批准号:
1310398 - 财政年份:2013
- 资助金额:
$ 42.02万 - 项目类别:
Continuing Grant
CAREER: Functional Nano-Composit Materials: Synthetic Methodology and Applications
职业:功能纳米复合材料:合成方法和应用
- 批准号:
0847535 - 财政年份:2009
- 资助金额:
$ 42.02万 - 项目类别:
Continuing Grant
相似国自然基金
基于金属单原子壳层配位结构调控的高比能室温钠硫电池
- 批准号:52372239
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
分子层沉积精准调控双活性位点原子配位结构和间距及其调控CO2电还原制乙醇性能研究
- 批准号:22302222
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于“液相原子层沉积方法”的硫化锑太阳电池开发与转换效率提升基础研究
- 批准号:62374065
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
原子层沉积制备分子筛限域过渡金属催化甲醇水蒸气重整制氢
- 批准号:22302098
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
原子层材料中的旋磁自旋-谷电子学
- 批准号:12374126
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Single molecule DNA/RNA sequencing technology based on a parallel Raman scattering readout in a coupled nanochannel/nanopore system
基于耦合纳米通道/纳米孔系统中并行拉曼散射读数的单分子 DNA/RNA 测序技术
- 批准号:
10682588 - 财政年份:2021
- 资助金额:
$ 42.02万 - 项目类别:
Single molecule DNA/RNA sequencing technology based on a parallel Raman scattering readout in a coupled nanochannel/nanopore system
基于耦合纳米通道/纳米孔系统中并行拉曼散射读数的单分子 DNA/RNA 测序技术
- 批准号:
10482189 - 财政年份:2021
- 资助金额:
$ 42.02万 - 项目类别:
Single molecule DNA/RNA transport and Raman scattering readout in a coupled nanochannel/nanopore sequencing system.
耦合纳米通道/纳米孔测序系统中的单分子 DNA/RNA 传输和拉曼散射读数。
- 批准号:
10155991 - 财政年份:2021
- 资助金额:
$ 42.02万 - 项目类别:
Single molecule DNA/RNA sequencing technology based on a parallel Raman scattering readout in a coupled nanochannel/nanopore system
基于耦合纳米通道/纳米孔系统中并行拉曼散射读数的单分子 DNA/RNA 测序技术
- 批准号:
10682588 - 财政年份:2021
- 资助金额:
$ 42.02万 - 项目类别:
Collaborative Research: Continuous Manufacturing of Hetero-Nanostructures Enabled by Colloidal Atomic Layer Deposition
合作研究:通过胶体原子层沉积实现异质纳米结构的连续制造
- 批准号:
1903112 - 财政年份:2019
- 资助金额:
$ 42.02万 - 项目类别:
Standard Grant