CDS&E: Coupled Thermal, Piezoelectric, and Hot Carrier Effects in AlGaN/GaN HEMTs: Multiscale Modeling of Time Evolution of Device Degradation

CDS

基本信息

  • 批准号:
    1610474
  • 负责人:
  • 金额:
    $ 28.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

High electron mobility transistors (HEMTs) based on nitride material systems feature a unique combination of high breakdown voltage, high output power, high efficiency, wide bandwidth, low noise, and temperature and radiation hardness and have great potential in applications such as wireless communication, homeland security, radar and satellite systems, as well as emerging harsh-environment computing, sensing, cloud-networking and power conversion electronics. However, issues related to long-term reliability of these devices still remain a major concern. Reliability can be defined as the probability of operating a system for a given time under specified conditions without failure. For semiconductor devices, unrecoverable change of a device parameter (such as degradation in the output current) may be considered as a failure. As evidenced in recently reported stress or accelerated tests, high temperature gradients (thermal effect), high electric fields and built-in or induced mechanical stresses (inverse piezoelectric effect), and high current densities (hot carrier effect) may all induce damages or defects in the constituent materials and ultimately lead to device failure. Yet, the exact physical mechanisms governing the defect formation as well as the nature and distribution of these defects are still not clearly understood. This poses a significant challenge to not only interpreting the experimental results but also predicting or extrapolating the device lifetime, tasks that are critical, for example, for devices used in remote applications. It is well acknowledged that to study physical processes that are experimentally intractable, numerical modeling becomes essential. This project sets out to develop a multiscale and multiphysics simulation framework for modeling the time evolution of and the physical mechanisms responsible for AlGaN/GaN HEMT degradation. The developed simulator will enable device design for improved reliability. The simulator and the related instructional materials will be deployed and made freely available on nanoHUB.org for the broader community to use in research and classroom activities. The objective of the proposed research is to develop a multiscale, multiphysics simulation framework (HEMT 3-D) for modeling device degradation mechanisms in AlGaN/GaN HEMTs. Specific fundamental issues to be addressed include: a) correlation between metal diffusion, polarization, and induced charge density, b) origin, spatial and temporal distribution of defects, and how they affect electrostatics, band structure, gate leakage, carrier deconfinement and trapping-detrapping and contact resistances, c) correlation between lattice heating and hot-electron injection into the barrier material, d) strain and inverse-piezoelectric effects and their temperature dependence, and e) device optimization through engineering geometry, material composition, channel orientation, and enhancement of heat transfer at barrier-channel and buffer-substrate interfaces via microscopic tuning of the interface characteristics. To properly treat the atomistic symmetry in the nanostructured active region as well as the underlying physical processes that are complex, nonlinear, highly stochastic and dynamically-coupled at different length and time scales, the simulator will employ a modular approach integrating first-principles molecular dynamics, lattice kinetic Monte Carlo, and quantum-corrected electron-phonon transport kernels. Portability and run-time efficiency of the simulator will be achieved through the use of open-source scientific software, compilers and libraries, as well as incorporating optimized models, algorithms and extensions for GPGPU platforms. Verification of the computational results will be considered at every stage of the software development effort against experimental data available in literature as well as through collaboration with experimentalists in research laboratories, academia and industries.
基于氮化物材料体系的高电子迁移率晶体管(HEMT)具有高击穿电压、高输出功率、高效率、宽带宽、低噪声以及耐高温和耐辐射等独特组合,在无线通信、国土安全、雷达和卫星系统,以及新兴的恶劣环境计算、传感、云网络和功率转换电子产品。然而,与这些设备的长期可靠性相关的问题仍然是一个主要问题。可靠性可以定义为在指定条件下给定时间内操作系统无故障的概率。对于半导体器件,器件参数发生不可恢复的变化(例如输出电流的退化)可以被视为故障。正如最近报告的应力或加速测试所证明的那样,高温度梯度(热效应)、高电场和内置或感应机械应力(逆压电效应)以及高电流密度(热载流子效应)都可能引起损坏或缺陷并最终导致器件故障。然而,控制缺陷形成的确切物理机制以及这些缺陷的性质和分布仍不清楚。这不仅对解释实验结果,而且对预测或推断设备寿命、对于远程应用中使用的设备等至关重要的任务提出了重大挑战。众所周知,为了研究实验上难以处理的物理过程,数值模拟变得至关重要。该项目旨在开发一个多尺度和多物理场仿真框架,用于对 AlGaN/GaN HEMT 退化的时间演化和物理机制进行建模。开发的模拟器将使设备设计能够提高可靠性。模拟器和相关教学材料将在 nanoHUB.org 上部署并免费提供,供更广泛的社区在研究和课堂活动中使用。本研究的目标是开发一个多尺度、多物理场仿真框架 (HEMT 3-D),用于对 AlGaN/GaN HEMT 中的器件退化机制进行建模。 要解决的具体基本问题包括:a) 金属扩散、极化和感应电荷密度之间的相关性,b) 缺陷的起源、空间和时间分布,以及它们如何影响静电、能带结构、栅极泄漏、载流子解禁和捕获。去俘获和接触电阻,c) 晶格加热和热电子注入势垒材料之间的相关性,d) 应变和逆压电效应及其温度依赖性,以及 e) 通过工程几何、材料成分、沟道取向和增强热量通过界面特性的微观调节在势垒通道和缓冲基底界面处进行传输。为了正确处理纳米结构活性区域的原子对称性以及不同长度和时间尺度下复杂、非线性、高度随机和动态耦合的底层物理过程,模拟器将采用集成第一原理分子动力学的模块化方法、晶格动力学蒙特卡罗和量子校正电子声子输运核。模拟器的可移植性和运行时效率将通过使用开源科学软件、编译器和库以及结合 GPGPU 平台的优化模型、算法和扩展来实现。在软件开发工作的每个阶段,都将根据文献中提供的实验数据以及通过与研究实验室、学术界和工业界的实验人员合作来考虑计算结果的验证。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shaikh Ahmed其他文献

Non-equilibrium Green’s function (NEGF) simulation of metallic carbon nanotubes including vacancy defects
含空位的金属碳纳米管的非平衡格林函数(NEGF)模拟
  • DOI:
    10.1007/s10825-006-0116-4
  • 发表时间:
    2007-01-18
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    N. Neophytou;Shaikh Ahmed;Gerhard Klimeck
  • 通讯作者:
    Gerhard Klimeck
A Novel Synthesis and antimicrobial activity of Flavanone Using environmental friendly Catalyst H(bimBF4)
环保型催化剂 H(bimBF4) 黄烷酮的新合成及其抗菌活性
  • DOI:
    10.3390/molecules171011693
  • 发表时间:
    2024-09-13
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Shaikh Ahmed;Arshia Parveen;S. Sayyed;Roshan Gate;M. India
  • 通讯作者:
    M. India
First-principles calculation of electronic structure and polarization in ε-Ga2O3 within GGA and GGA + U frameworks
GGA 和 GGA U 框架内 γ-Ga2O3 电子结构和极化的第一性原理计算
  • DOI:
    10.1088/2053-1591/ab5723
  • 发表时间:
    2019-11-21
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Zichang Zhang;Ye Wu;Shaikh Ahmed
  • 通讯作者:
    Shaikh Ahmed
Syntheses, spectral characterization, thermal properties and DNA cleavage studies of a series of Co(II), Ni(II) and Cu(II) polypyridine complexes with some new imidazole derivatives of 1,10-phenanthroline
一系列 Co(II)、Ni(II) 和 Cu(II) 聚吡啶配合物与 1,10-菲咯啉的一些新型咪唑衍生物的合成、光谱表征、热性质和 DNA 裂解研究
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shaikh Ahmed;S. Khaled
  • 通讯作者:
    S. Khaled
Comparison between uses of topical tacrolimus and triamcinolone ointment for the treatment of oral lichen planus.
外用他克莫司和曲安西龙软膏治疗口腔扁平苔藓的比较。
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shaikh Ahmed;Rubayet Alam Prodhan;Rifat Rezwana;Jahan Afroz;Mottakin Ahmad;Rakibul Hasan Khan
  • 通讯作者:
    Rakibul Hasan Khan

Shaikh Ahmed的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shaikh Ahmed', 18)}}的其他基金

SHF: SMALL: Embedded Cooling of High-Performance ICs Using Novel Nanostructured Thermoelectrics: Multiscale Software Development and Device Optimization
SHF:小型:使用新型纳米结构热电材料的高性能 IC 嵌入式冷却:多尺度软件开发和设备优化
  • 批准号:
    1218839
  • 财政年份:
    2012
  • 资助金额:
    $ 28.28万
  • 项目类别:
    Standard Grant
Fundamental Studies of Efficiency Droop in III-Nitride Solid-State Lighting Devices
III 族氮化物固态照明器件效率下降的基础研究
  • 批准号:
    1102192
  • 财政年份:
    2011
  • 资助金额:
    $ 28.28万
  • 项目类别:
    Standard Grant
II-NEW: Southern Illinois HPC Infrastructure (SIHPCI)
II-新:伊利诺伊州南部 HPC 基础设施 (SIHPCI)
  • 批准号:
    0855221
  • 财政年份:
    2009
  • 资助金额:
    $ 28.28万
  • 项目类别:
    Standard Grant

相似国自然基金

循环热-湿-力耦合环境下含CNT防除冰复合材料的界面性能研究
  • 批准号:
    52302457
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
碳化硅晶锭的超快激光“冷-热”耦合原位连续隐切机理及方法研究
  • 批准号:
    52335009
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目
金属氢化物高温蓄热系统氢热耦合的热质传递强化调控机制研究
  • 批准号:
    52376208
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
考虑电-热多物理耦合场的储能电池组动态均衡理论与技术
  • 批准号:
    52377017
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
太阳能驱动钙基储热耦合CO2原位利用的能量传递转化机理研究
  • 批准号:
    52376192
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Mrgprb2 mediated neuroinflammation after cerebral ischemia
Mrgprb2介导脑缺血后的神经炎症
  • 批准号:
    10644182
  • 财政年份:
    2023
  • 资助金额:
    $ 28.28万
  • 项目类别:
Feasibility of artesunate to improve HPV and cervical precancer treatment outcomes among HIV positive women in LMICs
青蒿琥酯改善中低收入国家 HIV 阳性女性 HPV 和宫颈癌前治疗结果的可行性
  • 批准号:
    10762866
  • 财政年份:
    2023
  • 资助金额:
    $ 28.28万
  • 项目类别:
CDS&E: Coupled Electro-Thermal Transport in Two-Dimensional Materials and Heterostructures
CDS
  • 批准号:
    2302879
  • 财政年份:
    2023
  • 资助金额:
    $ 28.28万
  • 项目类别:
    Standard Grant
Validation of Neuropilin-1 receptor signaling in nociceptive processing
伤害感受处理中 Neuropilin-1 受体信号传导的验证
  • 批准号:
    10774563
  • 财政年份:
    2023
  • 资助金额:
    $ 28.28万
  • 项目类别:
Structural Basis of Nociceptor Channel TRPM3 gating and pharmacology
伤害感受器通道 TRPM3 门控和药理学的结构基础
  • 批准号:
    10735377
  • 财政年份:
    2023
  • 资助金额:
    $ 28.28万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了