Dynamical Systems and Singular Perturbation Theory for Multiscale Reaction-Diffusion Systems
多尺度反应扩散系统的动力系统和奇异摄动理论
基本信息
- 批准号:1616064
- 负责人:
- 金额:$ 54.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project encompasses a series of critical mathematical and scientific questions for multiscale problems arising in the fields of pattern formation, chemistry and combustion, neuroscience, electrical engineering, and multi-particle systems. The first project is on pattern formation and analyzes the dynamics and stability of fronts, pulses, and spots in paradigm reaction-diffusion systems. The second project studies model reduction methods used in complex multiscale chemical reactions, biochemical networks, and combustion by incorporating also the effects of diffusion. The third project involves a completely new class of solutions, known as torus canards, found in models from neuroscience. These solutions help understand the transitions between periodic spiking and bursting. The fourth project will focus on ways to model and analyze the impacts of cut-offs on the dynamics of fronts. The project involves graduate students and postdoctoral fellows in the research, as well as collaborations with scientists at national laboratories. This research project addresses a series of questions concerning multiscale problems in pattern formation, chemistry and combustion, neuroscience, electrical engineering, and multi-particle systems. In the pattern formation project, paradigm reaction-diffusion systems will be studied. The goals are to develop new analytical techniques and mathematical theory for determining the boundaries of the stable pattern-forming regimes, analyzing the stability of semi-strong pulse interactions, modeling the scattering of pulses in 1-D systems and spots in 2-D systems, extending renormalization group methods for stability of modulating pulses, and predicting the dynamic bifurcations of pulses and fronts. The second project centers on accurate model reduction methods for large-scale combustion, chemical, and biochemical systems exhibiting multiple time scales. The goals are to analyze, develop, and improve cutting-edge model reduction methods for finding the low-dimensional manifolds that govern the effective system dynamics in the presence of diffusion. In the third project, the new phenomena of torus canards and canards in partial differential equations will be investigated. A theory of generic torus canards will be developed for fast-slow systems with multi-dimensional fast and slow variables. Known to exist in many neuroscience models, such as the Hindmarsh-Rose equations, the Morris-Lecar-Terman model, the Wilson-Cowan-Izhikevich system, and the forced van der Pol equation, torus canards are critical in the transition regimes between tonic spiking and bursting. A detailed study will also be carried out of the new bursting rhythms known as amplitude-modulated bursting rhythms. The fourth project will study the impacts of cut-offs on the reaction terms, introduced to accurately model regions of low particle densities, on the speeds, shapes, and stability of propagating fronts. A series of important problems related to fourth-order models, two-dimensional space dynamics, front initiation, and front pre-cursors will be studied.
该研究项目涵盖了一系列关键的数学和科学问题,涉及模式形成、化学和燃烧、神经科学、电气工程和多粒子系统领域中出现的多尺度问题。第一个项目是关于模式形成,并分析范式反应扩散系统中前沿、脉冲和斑点的动态和稳定性。第二个项目研究了复杂的多尺度化学反应、生化网络和燃烧中使用的模型简化方法,还纳入了扩散效应。第三个项目涉及一类全新的解决方案,称为环鸭翼,在神经科学模型中发现。这些解决方案有助于理解周期性尖峰和突发之间的转变。第四个项目将重点关注如何建模和分析切断对锋面动态的影响。该项目涉及研究生和博士后研究人员,以及与国家实验室科学家的合作。该研究项目解决了有关模式形成、化学和燃烧、神经科学、电气工程和多粒子系统中多尺度问题的一系列问题。在模式形成项目中,将研究范式反应扩散系统。目标是开发新的分析技术和数学理论,以确定稳定图案形成范围的边界,分析半强脉冲相互作用的稳定性,对一维系统中的脉冲散射和二维系统中的斑点进行建模,扩展重整化群方法以实现调制脉冲的稳定性,并预测脉冲和前沿的动态分叉。第二个项目的重点是针对具有多个时间尺度的大规模燃烧、化学和生化系统的精确模型简化方法。目标是分析、开发和改进尖端模型简化方法,以找到在扩散情况下控制有效系统动力学的低维流形。在第三个项目中,将研究偏微分方程中的环鸭翼和鸭翼的新现象。将为具有多维快慢变量的快慢系统开发通用环面鸭翼理论。已知存在于许多神经科学模型中,例如 Hindmarsh-Rose 方程、Morris-Lecar-Terman 模型、Wilson-Cowan-Izhikevich 系统和强制 van der Pol 方程,环面鸭翼在强直之间的过渡机制中至关重要尖峰和爆裂。还将对称为调幅突发节奏的新突发节奏进行详细研究。第四个项目将研究截止值对反应项的影响,引入这些反应项是为了精确模拟低粒子密度区域,以及传播前沿的速度、形状和稳定性。将研究与四阶模型、二维空间动力学、锋起始和锋前兆有关的一系列重要问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tasso Kaper其他文献
Tasso Kaper的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tasso Kaper', 18)}}的其他基金
Dynamical systems and singular perturbation theory for multi-scale reaction-diffusion phenomena
多尺度反应扩散现象的动力系统和奇异摄动理论
- 批准号:
1109587 - 财政年份:2011
- 资助金额:
$ 54.28万 - 项目类别:
Continuing Grant
Dynamical systems and singular perturbation theory for multi-scale reaction-diffusion phenomena
多尺度反应扩散现象的动力系统和奇异摄动理论
- 批准号:
0606343 - 财政年份:2006
- 资助金额:
$ 54.28万 - 项目类别:
Continuing grant
Dynamical systems theory and singular perturbation analysis for patterns, bubbles, and chemical reduction methods
动力系统理论和模式、气泡和化学还原方法的奇异摄动分析
- 批准号:
0306523 - 财政年份:2003
- 资助金额:
$ 54.28万 - 项目类别:
Standard Grant
Applied dynamical systems and singular perturbation theory for patterns, bubbles and chemical reactions
模式、气泡和化学反应的应用动力系统和奇异摄动理论
- 批准号:
0072596 - 财政年份:2000
- 资助金额:
$ 54.28万 - 项目类别:
Standard Grant
Mathematical Sciences: Dynamical Systems Theory Motivated by Bubbles, Accelerators and Split-Operator Numerical Schemes".
数学科学:由气泡、加速器和分裂算子数值方案推动的动力系统理论”。
- 批准号:
9624471 - 财政年份:1996
- 资助金额:
$ 54.28万 - 项目类别:
Standard Grant
Mathematical Sciences: New Resonance Phenomena and Adiabatic Chaos
数学科学:新共振现象和绝热混沌
- 批准号:
9307074 - 财政年份:1993
- 资助金额:
$ 54.28万 - 项目类别:
Standard Grant
相似国自然基金
国际应用系统分析研究学会2023暑期青年科学家项目
- 批准号:
- 批准年份:2023
- 资助金额:4.5 万元
- 项目类别:
基于量子Cramer-Rao极限的非厄米及开放系统量子感知研究
- 批准号:12305031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
角茴香花粉配置策略对花粉精准传递和交配系统的影响
- 批准号:32360084
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
高速铁路信号控制系统网络安全威胁分析与态势预警研究
- 批准号:62301461
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑异质性、交互性、层次性的医联体系统效率评价理论、方法及应用
- 批准号:72371232
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
相似海外基金
Singular limits in nearly integrable quantum systems and complex dynamical systems
近可积量子系统和复杂动力系统中的奇异极限
- 批准号:
22H01146 - 财政年份:2022
- 资助金额:
$ 54.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of rigorous computation methods for singular trajectories in dynamical systems
动力系统中奇异轨迹的严格计算方法的开发
- 批准号:
17K14235 - 财政年份:2017
- 资助金额:
$ 54.28万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Dynamical systems and singular perturbation theory for multi-scale reaction-diffusion phenomena
多尺度反应扩散现象的动力系统和奇异摄动理论
- 批准号:
1109587 - 财政年份:2011
- 资助金额:
$ 54.28万 - 项目类别:
Continuing Grant
Duality, singular perturbations and numerical analysis in infinite dimensional linear programming problems related to problems of control of nonlinear dynamical systems
与非线性动力系统控制问题相关的无限维线性规划问题的对偶性、奇异摄动和数值分析
- 批准号:
DP0986696 - 财政年份:2009
- 资助金额:
$ 54.28万 - 项目类别:
Discovery Projects
Residues on Singular Varieties
单一品种的残留
- 批准号:
18340015 - 财政年份:2006
- 资助金额:
$ 54.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)