Random Structures and Integrable Systems: Analysis and Applications
随机结构与可积系统:分析与应用
基本信息
- 批准号:1615921
- 负责人:
- 金额:$ 36.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2020-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The overarching goal of the projects supported by this award is to develop mathematical tools that can describe the structure and properties of networks and surfaces that model random evolution in random environments. Examples of this are contact processes which model infections that spread by contact with an infected neighbor. Other example are voter models which describe the spread of opinions where an individual's opinions are affected by his or her neighbor's opinions. Other motivations arise from extending methods of statistical mechanics classically done on regular lattices to the setting of random lattices which we may think of as random graphs or networks on a surface. In this work the PI will provide an improved understanding of such models in terms of random metrics. One may imagine these metrics are determined by patterns of disease propagation or social contact. Interestingly the general study of random metrics arose from physical investigations of two-dimensional (2D) quantum gravity.The central problem of 2D quantum gravity, in mathematical terms, is to rigorously construct a measure on the space of metrics on a Riemann surface. This is a long-standing problem of both geometric and physical relevance. But aside from, and perhaps even beyond this, it serves as a rich source of novel problems and ideas that are at the interface between random structures and integrable systems. The focus of this proposal is on emerging crosscurrents of research between probability theory, with an emphasis on random geometry and combinatorics, and integrable systems theory with an emphasis on classical analysis, complex function theory, dynamical systems and conservative partial differential equations.
该奖项支持的项目的总体目标是开发数学工具,这些工具可以描述网络和表面的结构和属性,以模拟随机环境中随机进化的模型。示例是接触过程,这些接触过程模拟了通过与受感染的邻居接触传播的感染。其他例子是选民模型,描述了个人意见受到邻居意见影响的观点的传播。其他动机是由在常规晶格上传统的统计力学方法扩展到随机晶格的设置,我们可以将其视为表面上的随机图或网络。在这项工作中,PI将根据随机指标提供对此类模型的改进理解。可能会想象这些指标是由疾病传播或社会接触模式决定的。有趣的是,对随机指标的一般研究源于对二维(2D)量子重力的物理研究。用数学术语,2D量子重力的核心问题是严格构建Riemann表面指标空间的度量。这是几何和身体相关性的长期问题。但是,除了甚至之外,它还可以充当随机结构和可集成系统之间界面的新颖问题和想法的丰富来源。该提议的重点是概率理论之间的新兴杂交,重点是随机几何和组合学,以及可集成的系统理论,重点是经典分析,复杂功能理论,动力学系统和保守的部分差分方程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Ercolani其他文献
Nicholas Ercolani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Ercolani', 18)}}的其他基金
Models and Asymptotics of Non-equilibrium Steady States in Driven Diffusive Systems
驱动扩散系统中非平衡稳态的模型和渐近
- 批准号:
1212167 - 财政年份:2012
- 资助金额:
$ 36.5万 - 项目类别:
Standard Grant
Variational Theories for Defects and Patterns
缺陷和模式的变分理论
- 批准号:
0808059 - 财政年份:2008
- 资助金额:
$ 36.5万 - 项目类别:
Continuing Grant
Conference on Mathematical Modeling and Analysis of Populations in Biological Systems
生物系统群体数学建模与分析会议
- 批准号:
0729519 - 财政年份:2007
- 资助金额:
$ 36.5万 - 项目类别:
Standard Grant
Program in Nonlinear Waves, Kinetic Theory and Hamiltonian Partial Differential Equations-Fields Institute, Spg 04
非线性波、运动理论和哈密顿偏微分方程项目-场研究所,Spg 04
- 批准号:
0352061 - 财政年份:2004
- 资助金额:
$ 36.5万 - 项目类别:
Standard Grant
Asymptotic Analysis of Variational and Hamiltonian PDEs
变分偏微分方程和哈密顿偏微分方程的渐近分析
- 批准号:
0412310 - 财政年份:2004
- 资助金额:
$ 36.5万 - 项目类别:
Standard Grant
ITR/AP: Optimal Nonlinear Estimation in the Geosciences
ITR/AP:地球科学中的最优非线性估计
- 批准号:
0113649 - 财政年份:2001
- 资助金额:
$ 36.5万 - 项目类别:
Standard Grant
Topics in Pattern Formation Far From Threshold
远离阈值的模式形成主题
- 批准号:
0073087 - 财政年份:2000
- 资助金额:
$ 36.5万 - 项目类别:
Standard Grant
Workshop on Integrating Integrability into Mathematics and Science, October 29 - 31, 1999, Tuscon, Arizona
将可积性融入数学和科学研讨会,1999 年 10 月 29 日至 31 日,亚利桑那州图斯康
- 批准号:
9971765 - 财政年份:1999
- 资助金额:
$ 36.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Models and Methods in Nonlinear Optics
数学科学:非线性光学中的几何模型和方法
- 批准号:
9626306 - 财政年份:1996
- 资助金额:
$ 36.5万 - 项目类别:
Standard Grant
Southwest Regional Workshop on New Directions in Dynamical Systems
西南地区动力系统新方向研讨会
- 批准号:
9523804 - 财政年份:1995
- 资助金额:
$ 36.5万 - 项目类别:
Standard Grant
相似国自然基金
基于介孔结构固态纳米孔器件的设计制备及单分子检测
- 批准号:22305041
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
激光照明用阵列包芯结构荧光陶瓷的制备及其发光光斑调控机理研究
- 批准号:52302139
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于高阶读数的拓扑关联结构域识别和比对方法研究
- 批准号:62372156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
钢-镍异种金属激光焊接过渡层组织结构精准调控机理及高温性能
- 批准号:52305390
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
梯度亲钠纳米结构堆用高温热管复合吸液芯的吸钠铺展及传热特性研究
- 批准号:12305174
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
- 批准号:
RGPIN-2017-06330 - 财政年份:2022
- 资助金额:
$ 36.5万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and geometric structures related to classical and quantum integrable systems
与经典和量子可积系统相关的代数和几何结构
- 批准号:
DDG-2022-00024 - 财政年份:2022
- 资助金额:
$ 36.5万 - 项目类别:
Discovery Development Grant
Algebraic and geometric structures related to integrable systems
与可积系统相关的代数和几何结构
- 批准号:
RGPIN-2014-05062 - 财政年份:2021
- 资助金额:
$ 36.5万 - 项目类别:
Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
- 批准号:
RGPIN-2017-06330 - 财政年份:2021
- 资助金额:
$ 36.5万 - 项目类别:
Discovery Grants Program - Individual
Determinantal structures in the integrable probability
可积概率中的行列式结构
- 批准号:
20K03626 - 财政年份:2020
- 资助金额:
$ 36.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)