Program in Nonlinear Waves, Kinetic Theory and Hamiltonian Partial Differential Equations-Fields Institute, Spg 04
非线性波、运动理论和哈密顿偏微分方程项目-场研究所,Spg 04
基本信息
- 批准号:0352061
- 负责人:
- 金额:$ 4.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-05-01 至 2005-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-0352061Principal Investigator: Nicholas M. ErcolaniThis proposal is for support of junior US based mathematicians toparticipate in scientific activities at the Fields Instituteduring the thematic program semester in Nonlinear Waves, KineticTheory and Hamiltonian Partial Differential Equations (PDE) thatwill take place during the Spring semester of 2004. The focus ofthe semester will concern areas of research on PDE that aremotivated by nonlinear wave theory, kinetic theory, andHamiltonian systems. Hamiltonian PDE form a class of linear andnonlinear partial differential equations which share the propertythat they can be written in the form of a Hamiltonian system withinfinitely many degrees of freedom, using various and sometimesnonclassical symplectic structures. Principal examples includenonlinear wave equations, nonlinear Schroedinger equations andEuler's equations for water waves. The analogy with dynamicalsystems raises a number of basic questions, which form a part ofthe motivation for this semester of focus on Hamiltonian PDE. Ofparticular note is the connection that has been establishedbetween the theory of kinetic equations coming from statisticalmechanics, and the nonlinear systems of PDE which arise in theirmacroscopic limits. The paradigm is the fluid dynamical scalinglimit of the Boltzmann equation, but there are numerous emergingareas of relevance for this analysis, including the beginnings ofa mathematically rigorous foundation for the theory of nonlinearwave turbulence.The organizers are expecting this thematic program to be a verydynamic focus of research on Partial Differential Equations thatmodel a variety of physical phenomena, such as planetary motions,lasers and optical fiber systems, ocean waves and fluidturbulence. The character of the program is broadlyinternational, and it represents an opportunity for exposure foryoung mathematicians. The short course series, the four workshopsand the symposia are especially appropriate for participation bydeveloping research mathematicians or physicists early in theircareer. The organizing committee believes that the program willengender further interaction and lasting collaboration amongparticipants from various disciplines. Additionally, theparticipation of women and under-represented minorities will beactively encouraged.
AbstractAward:DMS-0352061原理研究者:Nicholas M. Ercolanithis提议的建议是支持美国初级数学家在田野上的科学活动,以非线性浪潮,动力学理论和汉密尔顿的部分差分方程(PDE)在春季中的范围(PDE)进行了表达。非线性波理论,动力学理论,Andhamiltonian系统引起的PDE研究领域。 Hamiltonian PDE构成了一类线性和non线性偏微分方程,它们共享属性,这些属性可以在最终的自由度内以哈密顿系统的形式编写,并使用各种且有时的典型符号结构。主要示例包括烯键波方程,非线性Schroedinger方程和水波方程。与动力系统的类比提出了许多基本问题,这构成了本学期关注汉密尔顿PDE的动机的一部分。特有的注意是在来自统计学的动力学方程理论与在其宏观界限中产生的非线性PDE系统之间建立的联系。范式是玻尔兹曼方程的流体动态缩放限制,但是有许多与此分析相关的出现,包括在数学上对非线性波湍流理论的开始,组织者期望这种卑鄙的程序是对偏见的偏重的焦点。以及光纤系统,海浪和流体扰动。该计划的特征是广泛的,它代表了曝光数学家的机会。简短的课程系列,四个研讨会和座谈会特别适合参与拜托研究数学家或物理学家的参与。组织委员会认为,该计划将进一步互动,并在各个学科的参与者之间进行持久的合作。此外,妇女和代表性不足的少数民族的参与将受到战斗的鼓励。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Ercolani其他文献
Nicholas Ercolani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Ercolani', 18)}}的其他基金
Random Structures and Integrable Systems: Analysis and Applications
随机结构与可积系统:分析与应用
- 批准号:
1615921 - 财政年份:2016
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
Models and Asymptotics of Non-equilibrium Steady States in Driven Diffusive Systems
驱动扩散系统中非平衡稳态的模型和渐近
- 批准号:
1212167 - 财政年份:2012
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
Variational Theories for Defects and Patterns
缺陷和模式的变分理论
- 批准号:
0808059 - 财政年份:2008
- 资助金额:
$ 4.5万 - 项目类别:
Continuing Grant
Conference on Mathematical Modeling and Analysis of Populations in Biological Systems
生物系统群体数学建模与分析会议
- 批准号:
0729519 - 财政年份:2007
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
Asymptotic Analysis of Variational and Hamiltonian PDEs
变分偏微分方程和哈密顿偏微分方程的渐近分析
- 批准号:
0412310 - 财政年份:2004
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
ITR/AP: Optimal Nonlinear Estimation in the Geosciences
ITR/AP:地球科学中的最优非线性估计
- 批准号:
0113649 - 财政年份:2001
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
Topics in Pattern Formation Far From Threshold
远离阈值的模式形成主题
- 批准号:
0073087 - 财政年份:2000
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
Workshop on Integrating Integrability into Mathematics and Science, October 29 - 31, 1999, Tuscon, Arizona
将可积性融入数学和科学研讨会,1999 年 10 月 29 日至 31 日,亚利桑那州图斯康
- 批准号:
9971765 - 财政年份:1999
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Models and Methods in Nonlinear Optics
数学科学:非线性光学中的几何模型和方法
- 批准号:
9626306 - 财政年份:1996
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
Southwest Regional Workshop on New Directions in Dynamical Systems
西南地区动力系统新方向研讨会
- 批准号:
9523804 - 财政年份:1995
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
相似国自然基金
阵列结构诱发的波浪非线性共振体系及其特性研究
- 批准号:52371263
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
面向波浪能Wells涡轮的瞬态流动非线性降维-预测方法与非模态失速机理研究
- 批准号:52376022
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
非线性随机波浪作用下跨海桥梁的二阶波浪力特性及其对桥梁随机响应的动力放大机制研究
- 批准号:52378199
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
非线性波浪作用下弹性体大幅响应特性研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于深度学习时间反转的物理与数值水池非线性波浪主动吸收造波方法研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Conference: Emergent Phenomena in Nonlinear Dispersive Waves
会议:非线性色散波中的涌现现象
- 批准号:
2339212 - 财政年份:2024
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
Effect of nonlinear interaction between waves on abrupt bursts of emission in ultra high harmonic ion cyclotron frequency range
波间非线性相互作用对超高谐波离子回旋加速器频率范围内突然发射的影响
- 批准号:
23K03363 - 财政年份:2023
- 资助金额:
$ 4.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computer modelling of irregular nonlinear surface waves and their effects on offshore wind turbine structures
不规则非线性表面波的计算机建模及其对海上风力发电机结构的影响
- 批准号:
2889685 - 财政年份:2023
- 资助金额:
$ 4.5万 - 项目类别:
Studentship
CAREER: Guiding and Confining Nonlinear Elastic Waves in Moiré Metastructures
职业:在莫尔超结构中引导和限制非线性弹性波
- 批准号:
2238072 - 财政年份:2023
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
Stability of standing waves for the nonlinear Schr\"odinger equation with an external potential
具有外势的非线性薛定谔方程的驻波稳定性
- 批准号:
23K03174 - 财政年份:2023
- 资助金额:
$ 4.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)