Graphene-based all-proximity-coupled quantum spintronic devices

基于石墨烯的全邻近耦合量子自旋电子器件

基本信息

  • 批准号:
    1610447
  • 负责人:
  • 金额:
    $ 37.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

Owing to graphene's unique band structure, two new topological quantum phenomena can emerge: the quantum spin Hall effect (QSHE) and the quantum anomalous Hall effect (QAHE), both offering attractive potential for quantum spintronic applications. A common prerequisite for these two quantum phenomena is strong spin-orbit coupling, either intrinsic or the Rashba type. Of the two phenomena, QAHE requires additional exchange interaction or ferromagnetism in graphene. Although native graphene has neither interaction, its open and flexible structure allows modifications of the properties by proximity coupling to other materials. The proposed quantum phenomena based on quantized anomalous Hall effect can be potentially used for dense, robust, low-power, and scalable non-volatile memory which will drastically improve the performance of the current memory devices based on magnetic tunnel junctions. The non-volatile memory devices are ubiquitous in the modern society. High-performance memory devices based on quantum spintronic phenomena will have a significant impact on low power memory. PI proposes to train the undergraduate and graduate students, especially the underrepresented minority students by engaging them with research projects and teaching them newly developed elective courses. The also PI plans to continue outreach activities to a STEM school by coaching the Science Olympiad events to STEM High school students as well as giving lectures to the summer Physics teachers from southern California high schools during Physics Teacher Summer Academy sponsored by the Physics Department. PI's group has successfully demonstrated the anomalous Hall effect in graphene via the proximity coupling with a magnetic insulator. More recently, PI's group also demonstrated a strong enhancement of spin-orbit coupling via the proximity effect with a transition metal dichalcogenide material (e.g. WS2). In this work, the PI aims to explore the induced effects in all-proximity coupled graphene devices, which acquire new interactions for realizing the predicted quantum effects at relatively high temperatures. Currently few materials are predicted and even fewer materials have been experimentally shown to exhibit QSHE (e.g. HgTe/CdTe quantum wells) and QAHE (e.g. magnetic topological insulators). These materials are extremely difficult to be synthesized or only show the desired properties at extremely low temperatures. The proposed graphene-based devices are ideal systems in which the required interactions can be induced by proximity effects. Those quantum phenomena have not yet been explored in graphene, but it I expected to show many novel and interesting properties, such as quantized transport, robust Hall voltages, pure spin current, etc. These unmatched properties, if demonstrated at high temperatures, can potentially revolutionize the present-day spin electronics. In this proposed research, the PI plans to demonstrate a prototype quantum spintronic memory device based on QAHE. The knowledge learned in the graphene-based devices will deepen our fundamental understanding of two-dimensional electron systems with tunable interactions.
由于石墨烯的独特带结构,可以出现两个新的拓扑量子现象:量子旋转大厅效应(QSHE)和量子异常霍尔效应(qahe),都为量子旋转式应用提供了有吸引力的潜力。 这两种量子现象的常见先决条件是固有的或RashBA类型的强旋轨耦合。在这两种现象中,Qahe需要在石墨烯中的其他交换相互作用或铁磁剂。尽管天然石墨烯既没有相互作用,但其开放且柔性的结构允许通过接近其他材料耦合来修改属性。 基于量化异常霍尔效应的拟议量子现象可以用于致密,健壮,低功率和可扩展的非挥发性内存,这将大大改善基于磁性隧道连接的当前存储器设备的性能。非易失性记忆设备在现代社会中无处不在。基于量子自旋现象的高性能存储设备将对低功率记忆产生重大影响。 PI建议培训本科生和研究生,尤其是代表人数不足的少数族裔学生,通过与他们参与研究项目并教授新开发的选修课程,以培训他们的代表性不足。同样,PI计划通过指导科学奥林匹克运动来继续向STEM学校进行外展活动,以便在物理系赞助的物理学夏季学院期间向来自南加州高中的夏季物理老师讲课。 PI的组通过接近度耦合与磁绝缘子成功证明了石墨烯中的异常霍尔效应。 最近,PI的组还通过邻近效应与过渡金属二甲基元素材料(例如WS2)证明了自旋轨道耦合的强大增强。在这项工作中,PI旨在探索全耐度耦合石墨烯设备的诱导效应,该烯偶联的石墨烯设备获得了新的相互作用,以实现相对较高的温度下预测的量子效应。目前,很少有材料被预测,实验表明的材料甚至更少,展示了QSHE(例如HGTE/CDTE量子井)和Qahe(例如磁性拓扑绝缘子)。 这些材料很难合成,或者仅在极低的温度下显示所需的特性。所提出的基于石墨烯的设备是理想的系统,在该系统中,可以通过接近性效应诱导所需的相互作用。这些量子现象尚未在石墨烯中探索,但我期望显示许多新颖而有趣的特性,例如量化的传输,健壮的霍尔电压,纯自旋电流等。如果在高温下证明,这些无与伦比的特性可以潜在地彻底改变了当今的自旋电子。在这项拟议的研究中,PI计划展示基于Qahe的原型量子旋转记忆装置。 基于石墨烯的设备中学到的知识将加深我们对具有可调相互作用的二维电子系统的基本理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jing Shi其他文献

Political Regimes, Business Cycles, Seasonalities, and Returns
政治制度、商业周期、季节性和回报
Contract Manufacturer’s Encroachment Strategy considering Fairness Concern in Supply Chain
Selective Cl-Decoration on Nanocrystal Facets of Hematite for High-Efficiency Catalytic Oxidation of Cyclohexane: Identification of the Newly Formed Cl–O as Active Sites
赤铁矿纳米晶面上的选择性 Cl 修饰用于环己烷的高效催化氧化:鉴定新形成的 Cl-O 作为活性位点
  • DOI:
    10.1021/acsami.0c06870
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Shengtao Wu;Yurong He;Conghui Wang;Chuanming Zhu;Jing Shi;Zhaoying Chen;Yue Wan;Fang Hao;Wei Xiong;Pingle Liu;Hean Luo
  • 通讯作者:
    Hean Luo
Synthesis of hierarchical ZSM-5 zeolite in a rotating packed bed: Mechanism, property and application
旋转填充床多级孔ZSM-5沸石的合成:机理、性能及应用
  • DOI:
    10.1016/j.micromeso.2020.110679
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Tingting Qi;Jing Shi;Xishuo Wang;Kun Dong;Yong Luo;Jiawei Teng;Guang-Wen Chu;Hai-Kui Zou;Baochang Sun
  • 通讯作者:
    Baochang Sun
Effect of Nitrate Ions on Acidithiobacillus ferrooxidans-Mediated Bio-oxidation of Ferrous Ions and Pyrite
硝酸根离子对氧化亚铁硫杆菌介导的亚铁离子和黄铁矿生物氧化的影响
  • DOI:
    10.1007/s00284-020-01912-9
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Fenwu Liu;Xingxing Qiao;Ke Xing;Jing Shi;Lixiang Zhou;Yan Dong;Wenlong Bi;Jian Zhang
  • 通讯作者:
    Jian Zhang

Jing Shi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jing Shi', 18)}}的其他基金

Equipment: MRI: Track 1 Acquisition of Cryogen-Free Magnetometer for Investigating Novel Magnetic/Superconducting Systems
设备:MRI:第 1 道采购无冷冻剂磁力计,用于研究新型磁/超导系统
  • 批准号:
    2318424
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Static and dynamic spin properties in antiferromagnetic thin films and heterostructures
反铁磁薄膜和异质结构的静态和动态自旋特性
  • 批准号:
    2203134
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Exploring van der Waals heterostructure magnetic devices for high-efficiency and high-density memory
探索用于高效高密度存储器的范德华异质结构磁性器件
  • 批准号:
    2051450
  • 财政年份:
    2021
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
EAGER: External Magnetic Field Assisted Laser Metal Deposition of Highly Oriented Crystalline Ni-Based Alloys
EAGER:外部磁场辅助激光金属沉积高取向晶态镍基合金
  • 批准号:
    1746147
  • 财政年份:
    2017
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Modeling Material Microstructure Evolution and Fatigue Life of High Strength Metal Components Produced by Laser Melting Additive Process
合作研究:模拟激光熔化增材工艺生产的高强度金属部件的材料微观结构演变和疲劳寿命
  • 批准号:
    1563002
  • 财政年份:
    2016
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Ferrimagnetic Insulator Enabled Quantum Spintronic Effects and Devices
亚铁磁绝缘体实现量子自旋电子效应和器件
  • 批准号:
    1202559
  • 财政年份:
    2012
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Synthesis and characterization of half-metallic ferromagnetic oxides for organic semiconductor spintronic devices
有机半导体自旋电子器件用半金属铁磁氧化物的合成与表征
  • 批准号:
    0802214
  • 财政年份:
    2008
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
NER: Nanoscale Molecular Spintronic Materials and Devices
NER:纳米级分子自旋电子材料和器件
  • 批准号:
    0204978
  • 财政年份:
    2002
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant

相似国自然基金

基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
  • 批准号:
    52302362
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
  • 批准号:
    72302108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于AI的Ⅱ型糖尿病药物响应预测和个体用药方案推荐研究
  • 批准号:
    82373790
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于植物酚类生态友好型功能材料的蓝藻水华全生命周期防控与治理机制研究
  • 批准号:
    52370164
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
个体创业导向在数字化公司创业中的展现与效应研究:基于注意力基础观
  • 批准号:
    72302074
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SBIR Phase I: Micro-Electromechanical Systems (MEMS)-Based Near-Zero Power Infrared Sensors for Proximity Detection
SBIR 第一阶段:基于微机电系统 (MEMS) 的近零功耗红外传感器,用于接近检测
  • 批准号:
    2304549
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Tyrosinase-based sequential proximity labeling for tracking proteome dynamics
基于酪氨酸酶的顺序邻近标记用于跟踪蛋白质组动态
  • 批准号:
    23K13855
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
One step electrochemical biosensors based on the proximity among enzyme, antibody and aptamer
基于酶、抗体和适体之间邻近性的一步式电化学生物传感器
  • 批准号:
    23H01768
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Theoretical Study of Neuromorphic Devices Based on Two-dimensional-based Magnetic Tunnel Junctions
基于二维磁隧道结的神经形态器件的理论研究
  • 批准号:
    22KJ2092
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
medicinal chemisty based on proximity control of disease related proteins
基于疾病相关蛋白的邻近控制的药物化学
  • 批准号:
    22H00436
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了