Collaborative Research: Modeling Material Microstructure Evolution and Fatigue Life of High Strength Metal Components Produced by Laser Melting Additive Process

合作研究:模拟激光熔化增材工艺生产的高强度金属部件的材料微观结构演变和疲劳寿命

基本信息

  • 批准号:
    1563002
  • 负责人:
  • 金额:
    $ 14.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-04-01 至 2020-03-31
  • 项目状态:
    已结题

项目摘要

Additive manufacturing can enable industry to produce on-demand parts at a remote site, in space, or in a battlefield, with minimal inventory, delivery time, and tooling cost. It can also enable researchers to explore new material compositions leading to customized novel properties. To ensure quality of components in laser melting (one of the additive manufacturing processes) and reduce the lead time, it is critical to be able to evaluate material microstructure changes in response to the dynamic high thermal gradient in the process, and the strength of constructed materials under static and dynamic loads after the process. This award supports fundamental research to enable modeling and simulation methods that allow for realistic predictions, process design and optimization, and equipment design of laser melting additive process. The obtained knowledge provides the foundation for researchers and manufacturers to engineer new materials in small lot size at low cost by using laser melting additive process. It can also contribute to understanding the behavior of a broad range of materials in laser melting. Research results will enhance current engineering courses, and provide cross-disciplinary training opportunities for graduate students. The research objectives are to: (1) acquire knowledge on the mechanism of non-equilibrium solidification in laser melting, (2) determine the effects of non-uniform cyclic thermal history due to multilayer construction on microstructure changes, and (3) establish the relationship between the microstructure resulted from laser melting and the material performances. To achieve the first objective, a thermo-mechanical finite element analysis will be constructed to simulate the material addition process of laser melting, a phase-field approach will be created to calculate the time-dependent growth of alloy phase field based on the computed thermal history, and single-pass and multilayer laser melting experiments will be conducted on a medium carbon steel. The correlation between high thermal gradients from computation and the solute trapping phenomenon from experimental observation will be made to reveal the non-equilibrium solidification mechanism. To achieve the second objective, the microstructure evolutions under both single pass and multilayer laser melting processes are compared using the phase field approach, and verified by experiments. Microstructure variations in terms of grain size, phase composition and distribution will be obtained, resulting from different thermal histories of material points. To achieve the third objective, the analytical models for estimating strengths will be established based on the obtained material microstructure, and the fatigue crack initiation life will be estimated based on the minimum energy principle applied when a crack is created along the weakest material point and path.
增材制造可以使工业界能够在远程站点、太空或战场上生产按需零件,并以最少的库存、交付时间和工具成本。它还可以使研究人员探索新材料成分,从而获得定制的新颖特性。为了确保激光熔化(增材制造工艺之一)中部件的质量并减少交货时间,至关重要的是能够评估响应工艺中动态高热梯度的材料微观结构变化以及构造的强度加工后材料在静态和动态载荷下。该奖项支持基础研究,以实现建模和模拟方法,从而实现激光熔化增材工艺的现实预测、工艺设计和优化以及设备设计。所获得的知识为研究人员和制造商利用激光熔化增材工艺以低成本设计小批量新材料奠定了基础。它还有助于了解多种材料在激光熔化中的行为。研究成果将增强现有的工程课程,并为研究生提供跨学科的培训机会。研究目标是:(1) 获取有关激光熔化中非平衡凝固机制的知识,(2) 确定多层结构导致的不均匀循环热史对微观结构变化的影响,以及 (3) 建立激光熔化产生的微观结构与材料性能之间的关系。为了实现第一个目标,将构建热机械有限元分析来模拟激光熔化的材料添加过程,将创建相场方法来计算基于计算的热合金相场随时间的增长。历史,并将在中碳钢上进行单道次和多层激光熔化实验。将计算得出的高热梯度与实验观察到的溶质捕获现象之间的相关性,以揭示非平衡凝固机制。为了实现第二个目标,使用相场方法比较了单道和多层激光熔化工艺下的微观结构演变,并通过实验进行了验证。由于材料点的不同热历史,可以获得晶粒尺寸、相组成和分布方面的微观结构变化。为了实现第三个目标,将根据获得的材料微观结构建立估计强度的分析模型,并根据沿着最薄弱的材料点和路径产生裂纹时应用的最小能量原理来估计疲劳裂纹萌生寿命。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jing Shi其他文献

Political Regimes, Business Cycles, Seasonalities, and Returns
政治制度、商业周期、季节性和回报
Contract Manufacturer’s Encroachment Strategy considering Fairness Concern in Supply Chain
Selective Cl-Decoration on Nanocrystal Facets of Hematite for High-Efficiency Catalytic Oxidation of Cyclohexane: Identification of the Newly Formed Cl–O as Active Sites
赤铁矿纳米晶面上的选择性 Cl 修饰用于环己烷的高效催化氧化:鉴定新形成的 Cl-O 作为活性位点
  • DOI:
    10.1021/acsami.0c06870
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Shengtao Wu;Yurong He;Conghui Wang;Chuanming Zhu;Jing Shi;Zhaoying Chen;Yue Wan;Fang Hao;Wei Xiong;Pingle Liu;Hean Luo
  • 通讯作者:
    Hean Luo
Synthesis of hierarchical ZSM-5 zeolite in a rotating packed bed: Mechanism, property and application
旋转填充床多级孔ZSM-5沸石的合成:机理、性能及应用
  • DOI:
    10.1016/j.micromeso.2020.110679
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Tingting Qi;Jing Shi;Xishuo Wang;Kun Dong;Yong Luo;Jiawei Teng;Guang-Wen Chu;Hai-Kui Zou;Baochang Sun
  • 通讯作者:
    Baochang Sun
Effect of Nitrate Ions on Acidithiobacillus ferrooxidans-Mediated Bio-oxidation of Ferrous Ions and Pyrite
硝酸根离子对氧化亚铁硫杆菌介导的亚铁离子和黄铁矿生物氧化的影响
  • DOI:
    10.1007/s00284-020-01912-9
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Fenwu Liu;Xingxing Qiao;Ke Xing;Jing Shi;Lixiang Zhou;Yan Dong;Wenlong Bi;Jian Zhang
  • 通讯作者:
    Jian Zhang

Jing Shi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jing Shi', 18)}}的其他基金

Equipment: MRI: Track 1 Acquisition of Cryogen-Free Magnetometer for Investigating Novel Magnetic/Superconducting Systems
设备:MRI:第 1 道采购无冷冻剂磁力计,用于研究新型磁/超导系统
  • 批准号:
    2318424
  • 财政年份:
    2023
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
Static and dynamic spin properties in antiferromagnetic thin films and heterostructures
反铁磁薄膜和异质结构的静态和动态自旋特性
  • 批准号:
    2203134
  • 财政年份:
    2022
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Continuing Grant
Exploring van der Waals heterostructure magnetic devices for high-efficiency and high-density memory
探索用于高效高密度存储器的范德华异质结构磁性器件
  • 批准号:
    2051450
  • 财政年份:
    2021
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
EAGER: External Magnetic Field Assisted Laser Metal Deposition of Highly Oriented Crystalline Ni-Based Alloys
EAGER:外部磁场辅助激光金属沉积高取向晶态镍基合金
  • 批准号:
    1746147
  • 财政年份:
    2017
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
Graphene-based all-proximity-coupled quantum spintronic devices
基于石墨烯的全邻近耦合量子自旋电子器件
  • 批准号:
    1610447
  • 财政年份:
    2016
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
Ferrimagnetic Insulator Enabled Quantum Spintronic Effects and Devices
亚铁磁绝缘体实现量子自旋电子效应和器件
  • 批准号:
    1202559
  • 财政年份:
    2012
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
Synthesis and characterization of half-metallic ferromagnetic oxides for organic semiconductor spintronic devices
有机半导体自旋电子器件用半金属铁磁氧化物的合成与表征
  • 批准号:
    0802214
  • 财政年份:
    2008
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Continuing Grant
NER: Nanoscale Molecular Spintronic Materials and Devices
NER:纳米级分子自旋电子材料和器件
  • 批准号:
    0204978
  • 财政年份:
    2002
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant

相似国自然基金

几何造型与机器学习融合的图像数据拟合问题研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
产能共享背景下的制造型企业运营决策研究:基于信息共享与数据质量的视角
  • 批准号:
    72271252
  • 批准年份:
    2022
  • 资助金额:
    44 万元
  • 项目类别:
    面上项目
构造型深部岩体动力灾害的孕育和发生全过程机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
轴流压气机端壁造型流动机理及设计技术研究
  • 批准号:
    52076179
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基于知识重用的车身自动几何建模方法研究
  • 批准号:
    51905389
  • 批准年份:
    2019
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Ionospheric Density Response to American Solar Eclipses Using Coordinated Radio Observations with Modeling Support
合作研究:利用协调射电观测和建模支持对美国日食的电离层密度响应
  • 批准号:
    2412294
  • 财政年份:
    2024
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
  • 批准号:
    2344259
  • 财政年份:
    2024
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
  • 批准号:
    2332469
  • 财政年份:
    2024
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Continuing Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了