Controlling Heterogeneous Stress Relaxation in Tin Films: Whiskers, Grain Boundary Sliding, and Beyond
控制锡膜中的非均匀应力松弛:晶须、晶界滑动等
基本信息
- 批准号:1610420
- 负责人:
- 金额:$ 48.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-15 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-Technical AbstractIn microelectronics some of the materials are inherently unstable because they are being used at temperatures close to their melting temperatures. One such material is tin in solder joints: Tin atoms are able to move around (diffuse) relatively quickly at room temperature in response to changes in their environment. Of particular concern is the formation of long Tin whiskers in response to stresses normally occuring in microelectronics. Long Tin filaments can grow spontaneously from surfaces of thin Sn films and can reach lengths of several millimeters. Such whiskers can bridge adjacent contacts and cause short circuits leading to electronic system failures. The question is how to stop them from forming. A new strategy is needed to better understand and specifically to mitigate failure due to whisker growth in Sn films. In particular, forming whiskers is only one of the ways in which the atoms in thin Sn films can respond to stresses. This new strategy needs to take into account the contributions of other processes to relaxing stresses in thin films and to learn how to manipulate them to keep whiskers from forming. The goal of this project is to develop models, numerical simulations and critical experiments at the microscopic scale to quantify the different contributions of these processes in these films. The proposed computational effort is a step forward in reducing the reliance on experimentation to develop new materials or to improve reliability in existing ones. Achieving this goal for materials design requires the development of new predictive simulation tools and training the next generation work force on the use of these advanced tools. The data and simulation tools developed in this project will be broadly available through the NSF supported nanoHUB.org with open access to the materials community including researchers in industry and academy and educators. Demonstration tools for education will be deployed in nanoHUB.org and integrated in the Engineering curriculum at Purdue and will be accessible for universities and industry everywhere. The work proposed provides an excellent opportunity to train graduate students and undergraduates in the integration of materials science and engineering experimental and computational techniques, in developing cross-disciplinary approaches, and in working as members of a multi-disciplinary international research team. Techical AbstractHeterogeneous microstructure-induced stresses that drive stress relaxation are linked to a wide range of failure mechanisms in thin metal films. Whisker and hillock formation are known responses of thin metal films to residual stresses but others include yielding, diffusional and dislocation-mediated creep, grain boundary sliding, cracking, delamination, surface roughening, extrusion-intrusion formation, recrystallization and grain growth. The relative contributions of these multiple operations to stress relaxation frequently switch as stress distributions and microstructures evolve in a dynamic and complex process. A strategy to better understand their changing contributions and specifically to mitigate failure due to whisker growth in Sn films needs to take into account the contributions of these mechanisms to identify: i) the local conditions under which surface grains form whiskers and influence their rate of growth, and ii) what other mechanisms compete with or accelerate whisker formation and growth. The goal of this project is to develop models, numerical simulations and experiments at the microscopic scale to study deformation-microstructure relationships to relax residual stresses in thin Sn films during cyclic bending and thermal cycling, two configurations where multiple processes operate. We propose to develop a framework with simulations of these simultaneous processes with experiments designed to explore the different contributions of these mechanisms. While the proposed framework could be applied to a variety of thin film systems, Sn films not only display a wide range of phenomena that will demonstrate its capabilities, but will also provide the opportunity to test its usefulness in developing mitigation strategies to inhibit tin whisker formation. While the understanding of local stress relaxation processes in thin films and small-scale structures has grown significantly over the past decade, a strategy to examine multiple simultaneous processes, such as dislocation generation, recrystallization, creep, and whisker formation, is still developing. The recent observation that, in Sn films, whiskers nucleate and grow along some grain boundaries during thermal cycling and cyclic bending with other dislocation and diffusion processes being evident offers the opportunity to explore this stress-microstructure-deformation space. The numerical simulations and experiments proposed in this effort are a step forward in answering questions, such as where and how do grains nucleate to form whiskers and hillocks, what local conditions affect their rates of growth and how does whisker growth competes or collaborates with other stress relaxation mechanisms.
非技术摘要在微电子学中,一些材料本质上不稳定,因为它们在接近其熔化温度的温度下使用。其中一种材料是焊点中的锡:锡原子能够在室温下相对较快地移动(扩散),以响应环境的变化。特别值得关注的是,微电子中通常出现的应力会导致长锡晶须的形成。长锡丝可以从锡薄膜表面自发生长,长度可以达到几毫米。这种晶须会桥接相邻的触点并导致短路,从而导致电子系统故障。问题是如何阻止它们形成。需要一种新的策略来更好地理解,特别是减轻锡膜中晶须生长引起的故障。 特别是,形成晶须只是锡薄膜中的原子响应应力的方式之一。这种新策略需要考虑其他过程对松弛薄膜应力的贡献,并学习如何操纵它们以防止晶须形成。该项目的目标是在微观尺度上开发模型、数值模拟和关键实验,以量化这些过程在这些薄膜中的不同贡献。所提出的计算工作在减少开发新材料或提高现有材料的可靠性方面对实验的依赖方面向前迈出了一步。 实现这一材料设计目标需要开发新的预测模拟工具,并培训下一代劳动力使用这些先进工具。该项目开发的数据和模拟工具将通过 NSF 支持的 nanoHUB.org 广泛提供,并向材料社区(包括工业界、学术界的研究人员和教育工作者)开放访问。教育演示工具将部署在 nanoHUB.org 中,并集成到普渡大学的工程课程中,并将可供世界各地的大学和工业界使用。拟议的工作为培训研究生和本科生整合材料科学与工程实验和计算技术、开发跨学科方法以及作为多学科国际研究团队的成员提供了绝佳的机会。技术摘要驱动应力松弛的非均匀微结构引起的应力与金属薄膜中的多种失效机制有关。晶须和小丘的形成是金属薄膜对残余应力的已知反应,但其他反应包括屈服、扩散和位错介导的蠕变、晶界滑动、裂纹、分层、表面粗糙化、挤压-侵入形成、再结晶和晶粒生长。随着应力分布和微观结构在动态和复杂过程中的演变,这些多种操作对应力松弛的相对贡献经常发生变化。为了更好地理解它们不断变化的贡献,特别是为了减轻锡膜中晶须生长造成的故障,需要考虑这些机制的贡献,以确定:i) 表面晶粒形成晶须并影响其生长速率的局部条件,以及 ii) 还有哪些其他机制可以竞争或加速晶须的形成和生长。该项目的目标是开发微观尺度的模型、数值模拟和实验,以研究变形与微观结构的关系,以在循环弯曲和热循环(多种工艺运行的两种配置)过程中松弛锡薄膜中的残余应力。我们建议开发一个框架,通过模拟这些同时过程,并通过实验来探索这些机制的不同贡献。虽然所提出的框架可以应用于各种薄膜系统,但锡薄膜不仅表现出多种现象来证明其能力,而且还提供了测试其在制定抑制锡晶须形成的缓解策略方面的有用性的机会。虽然过去十年对薄膜和小尺寸结构中局部应力松弛过程的理解有了显着增长,但检查多个同时过程(例如位错产生、再结晶、蠕变和晶须形成)的策略仍在发展中。最近的观察发现,在锡薄膜中,晶须在热循环和循环弯曲过程中沿着一些晶界成核并生长,其他位错和扩散过程也很明显,这为探索这种应力-微观结构-变形空间提供了机会。这项工作中提出的数值模拟和实验在回答诸如晶须在何处以及如何成核形成晶须和小丘、哪些局部条件影响其生长速率以及晶须生长如何与其他应力竞争或协作等问题方面向前迈出了一步。松弛机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marisol Koslowski其他文献
Marisol Koslowski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marisol Koslowski', 18)}}的其他基金
Microstructural Evolution of Molecular Crystals
分子晶体的微观结构演化
- 批准号:
0825994 - 财政年份:2008
- 资助金额:
$ 48.76万 - 项目类别:
Standard Grant
相似国自然基金
石墨烯MEMS高温压力传感器异质结力敏调控及耐温可靠性研究
- 批准号:62374152
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于石墨烯异质结的宽量程柔性MEMS耐高温压力传感器关键技术研究
- 批准号:52305614
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于石墨烯的新型异质复合结构压力传感新机理和性能验证研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
压力诱导石墨烯/磁性绝缘体异质结的量子反常霍尔效应研究
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
解析人类活动压力梯度上的“环境异质性-生物多样性”关系暨检验“生境面积-环境异质性权衡”假说
- 批准号:31971484
- 批准年份:2019
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Role of RNA helicase Ddx5 in pathological cardiac remodeling
RNA解旋酶Ddx5在病理性心脏重塑中的作用
- 批准号:
10718560 - 财政年份:2023
- 资助金额:
$ 48.76万 - 项目类别:
The roles of p53 and MYC dynamics in regulating heterogeneous cell fate responses to genotoxic stress
p53和MYC动力学在调节基因毒性应激的异质细胞命运反应中的作用
- 批准号:
10635353 - 财政年份:2023
- 资助金额:
$ 48.76万 - 项目类别:
Investigation of the essential structural and sequence features for the recognition of RNA methylations during post-transcriptional regulation of gene expression
研究基因表达转录后调控过程中识别 RNA 甲基化的基本结构和序列特征
- 批准号:
10796260 - 财政年份:2023
- 资助金额:
$ 48.76万 - 项目类别:
Heterogeneous microglia activation mediates stress-induced changes in neural circuitry.
异质小胶质细胞激活介导应激引起的神经回路变化。
- 批准号:
10741172 - 财政年份:2023
- 资助金额:
$ 48.76万 - 项目类别:
A Chemical Footprinting Approach towards Poly-ADP-Ribosylation-regulated Biomolecular Condensation
聚 ADP 核糖基化调节生物分子缩合的化学足迹方法
- 批准号:
10524783 - 财政年份:2022
- 资助金额:
$ 48.76万 - 项目类别: