Collaborate Research: Construct a General Hilbert Space Multi-dimensional Model

合作研究:构建通用希尔伯特空间多维模型

基本信息

  • 批准号:
    1560501
  • 负责人:
  • 金额:
    $ 23.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-05-15 至 2020-04-30
  • 项目状态:
    已结题

项目摘要

This research project will develop and test a new measurement model based on quantum probability theory called the Hilbert space multi-dimensional model. With the striking advancement of modern data-collection methods, complex and massive data sets are generated from various sources and contexts that are conceptually connected. This promises to provide a better understanding of complex social and behavioral phenomena, but it also presents significant challenges for the integration and interpretation of data from multiple sources. The general Hilbert space multi-dimensional model will improve understanding of complex social and behavioral phenomena ranging from violations of rational decision theory to social survey data integration and interpretation. This project is part of a larger research program to build probabilistic and dynamic systems for social and behavioral sciences from quantum rather than classical probability principles. The project will develop and disseminate from public repositories self-contained software packages for applying and estimating the general Hilbert space multi-dimensional model in MATLAB, R, and Python.The investigators will develop and test the general Hilbert space multi-dimensional model, including the development of the mathematical theory of the model and related statistical and computational tools for applying the model. They will rigorously test the model using a large range of experiments. When large data sets are collected from different contexts or conditions, often they can be summarized by contingency tables. A critical problem arises, however, regarding how to integrate and synthesize these tables into a compressed, coherent, and interpretable representation. A common solution is to try to construct a joint probability distribution to reproduce the frequency data observed in the tables. Bayesian causal networks then are often used to reduce the number of estimated parameters by imposing conditional independence assumptions. In many cases, however, no such joint distribution exists that can reproduce the observed tables. The general Hilbert space multi-dimensional model provides a promising solution to the problems faced by complex and massive data by constructing a single finite state vector that lies within a low dimensional Hilbert space and by forming a set of non-commuting measurement operators that represent the measurements. In this way, the model produces a compressed, coherent, and interpretable representation of the measured variables that form the complex collection of data tables even when no standard joint distribution exists.
该研究项目将开发和测试一种基于量子概率论的新测量模型,称为希尔伯特空间多维模型。 随着现代数据收集方法的显着进步,从概念上相互关联的各种来源和背景中生成了复杂而庞大的数据集。 这有望更好地理解复杂的社会和行为现象,但也对整合和解释多个来源的数据提出了重大挑战。通用希尔伯特空间多维模型将提高对复杂社会和行为现象的理解,从违反理性决策理论到社会调查数据整合和解释。 该项目是一个更大的研究计划的一部分,该计划旨在根据量子原理而不是经典概率原理为社会和行为科学构建概率和动态系统。 该项目将开发并从公共存储库传播独立的软件包,用于在 MATLAB、R 和 Python 中应用和估计通用希尔伯特空间多维模型。研究人员将开发和测试通用希尔伯特空间多维模型,包括模型的数学理论以及应用该模型的相关统计和计算工具的发展。他们将通过大量实验严格测试该模型。当从不同的上下文或条件收集大型数据集时,通常可以通过列联表来总结它们。然而,出现了一个关键问题,即如何将这些表集成和合成为压缩的、连贯的和可解释的表示形式。常见的解决方案是尝试构建联合概率分布来重现表中观察到的频率数据。贝叶斯因果网络通常用于通过施加条件独立性假设来减少估计参数的数量。然而,在许多情况下,不存在可以重现观察到的表的联合分布。通用希尔伯特空间多维模型通过构造位于低维希尔伯特空间内的单个有限状态向量并形成一组表示测量。通过这种方式,即使不存在标准联合分布,模型也会生成测量变量的压缩、连贯且可解释的表示,这些变量形成复杂的数据表集合。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zheng Wang其他文献

Microplastics in the tropical Northwestern Pacific Ocean and the Indonesian seas
热带西北太平洋和印度尼西亚海域的微塑料
  • DOI:
    10.1016/j.seares.2023.102406
  • 发表时间:
    2023-08-01
  • 期刊:
  • 影响因子:
    2
  • 作者:
    D. Yuan;C. Corvianawatie;M. Cordova;D. Surinati;Yao Li;Zheng Wang;Xiang Li;Rui Li;Jing Wang;Leilei He;Allen N. Yuan;D. Dirhamsyah;Z. Arifin;Xiaoxia Sun;A. Isobe
  • 通讯作者:
    A. Isobe
Induction Motor Drives
感应电机驱动器
Growth of BaTaO 2 N–BaNa 0.25 Ta 0.75 O 3 Solid Solution Photocatalyst for Visible Light-Driven Z-Scheme Overall Water Splitting
  • DOI:
    10.34133/energymatadv.0003
  • 发表时间:
    2022-01-01
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    Yingju Luo;Qi Guo;Jun Xu;Hanghang Zhou;Zheng Wang;Hong He
  • 通讯作者:
    Hong He
Electromagnetic induction with time-varying magductance under constant magnetic field
恒定磁场下磁导率时变的电磁感应
  • DOI:
    10.1063/5.0185920
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Wei Qin;Ming Cheng;Xinkai Zhu;Zheng Wang;Wei Hua
  • 通讯作者:
    Wei Hua
Introduction to Chaos Theory and Electric Drive Systems
混沌理论和电力驱动系统简介
  • DOI:
    10.1002/9780470826355.ch2
  • 发表时间:
    2011-03-22
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Chau;Zheng Wang
  • 通讯作者:
    Zheng Wang

Zheng Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zheng Wang', 18)}}的其他基金

M4Secure: Making Memory Management More Secure
M4Secure:让内存管理更安全
  • 批准号:
    EP/X037304/1
  • 财政年份:
    2023
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Research Grant
Modernise Compiler Technology With Deep Learning
通过深度学习实现编译器技术现代化
  • 批准号:
    EP/X018202/1
  • 财政年份:
    2023
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Research Grant
Examining the long-term social legacy of mega urban projects - A comparison of Shanghai and Dujiangyan City
审视巨型城市项目的长期社会遗产——上海与都江堰市的比较
  • 批准号:
    ES/W003104/2
  • 财政年份:
    2023
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Research Grant
Examining the long-term social legacy of mega urban projects - A comparison of Shanghai and Dujiangyan City
审视巨型城市项目的长期社会遗产——上海与都江堰市的比较
  • 批准号:
    ES/W003104/1
  • 财政年份:
    2022
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Research Grant
SANDeRS: Smart, Adaptive Compilation for Dark Silicon
SANDERS:针对黑硅的智能、自适应编译
  • 批准号:
    EP/M01567X/1
  • 财政年份:
    2015
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Research Grant
Distributed Heterogeneous Vertically IntegrateD ENergy Efficient Data centres
分布式异构垂直集成节能数据中心
  • 批准号:
    EP/M015793/1
  • 财政年份:
    2014
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Research Grant
Collaborative Research: Quantum Decision Theory
合作研究:量子决策理论
  • 批准号:
    1153846
  • 财政年份:
    2012
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Standard Grant
Collaborative Research: Quantum Decision Theory
合作研究:量子决策理论
  • 批准号:
    0818277
  • 财政年份:
    2009
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Continuing Grant

相似国自然基金

金沙江构造带水岩耦合作用下滑带力学性质弱化机理与巨型滑坡灾变机制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
基于缩合作用的多酚羟基木质素纳米球的构造机制及其农药负载-控释研究
  • 批准号:
    51903179
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
纳米多孔硅基光电极的效率与稳定的去耦合作用研究
  • 批准号:
    21805080
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
沥青路面噪声特性及其长期演变规律研究
  • 批准号:
    51578076
  • 批准年份:
    2015
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目
南海深海记录与周边的地质对比研究
  • 批准号:
    91528302
  • 批准年份:
    2015
  • 资助金额:
    170.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

The role of nigrostriatal and striatal cell subtype signaling in behavioral impairments related to schizophrenia
黑质纹状体和纹状体细胞亚型信号传导在精神分裂症相关行为障碍中的作用
  • 批准号:
    10751224
  • 财政年份:
    2024
  • 资助金额:
    $ 23.66万
  • 项目类别:
Efficiency of evidence accumulation (EEA) as a higher-order, computationally defined RDoc construct
证据积累效率 (EEA) 作为高阶、计算定义的 RDoc 构造
  • 批准号:
    10663601
  • 财政年份:
    2023
  • 资助金额:
    $ 23.66万
  • 项目类别:
Artificial Intelligence powered virtual digital twins to construct and validate AI automated tools for safer MR-guided adaptive RT of abdominal cancers
人工智能支持虚拟数字双胞胎来构建和验证人工智能自动化工具,以实现更安全的 MR 引导的腹部癌症自适应放疗
  • 批准号:
    10736347
  • 财政年份:
    2023
  • 资助金额:
    $ 23.66万
  • 项目类别:
Building a Community-Based Mental Health Literacy Intervention for African American Young Adults
为非裔美国年轻人建立基于社区的心理健康素养干预措施
  • 批准号:
    10738855
  • 财政年份:
    2023
  • 资助金额:
    $ 23.66万
  • 项目类别:
An innovative and straightforward approach to construct and manipulate viral infectious clones
构建和操作病毒感染性克隆的创新且简单的方法
  • 批准号:
    10667766
  • 财政年份:
    2023
  • 资助金额:
    $ 23.66万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了