I-Corps: Thermal Interface Materials with Ultrahigh Thermal Conductivity and Superior Conformability for Effective Cooling of Electronic Components

I-Corps:具有超高导热性和卓越适形性的热界面材料,可有效冷却电子元件

基本信息

项目摘要

There is an increase in demand for smaller, lighter and more efficient electronic devices to simplify our everyday life, protect the environment, expand global access to education and decrease energy consumption. However, overheating in these devices has been a key issue which has prevented existing technology from meeting key application requirements in this space, and has prevented the necessary improvements in technology for future electronic devices to fully meet the small size, high power and high reliability specifications for personal applications. The range of materials available to promote device cooling has been largely unchanged for more than a decade and their performance improvements are lagging behind the advances made in electronics applications. This team has developed a new material, which can manage heat very effectively and as a result enable electronics to operate faster, more accurately and reliably. Electronics industries dealing with high-power processors, high-intensity LEDs, vehicle electronics, telecommunication infrastructure, and semiconductor chip packaging can significantly benefit from our new technology. In addition, the use of batteries in automotive and home-power landscapes is exponentially increasing. Overheating remains a critical issue affecting the safety and limiting the performance of such batteries. Alternative power generation technologies such as wind and solar also rely on robust power storage solutions ? all of which will be enhanced by access to next-generation thermal management technology.This team seeks to commercialize a novel Thermal Interface Material (TIM) which will be useful in cooling next-generation microprocessors, circuits and electronic devices. The thermal performance of current generation TIMs peaks at a conductivity value of approximately 80 W/(m.K). The proposed new material has ultra-high thermal conductivity much greater than 250 W/(m.K). The project involves the use of ceramic nanosheets functionalized with soft ligands, which are then electrocodeposited in a metal matrix, creating a soft and compliant metal which retains its high conductivity. The proposed technology therefore provides a hybrid nanocomposite which is a combination of metallic, ceramic, and organic microstructures. The team expects that as demands for improved energy efficiency and thermal management continue to increase that the proposed technology may have a wide-ranging positive impact on lowering the energy used for cooling purposes, among other benefits.
为了简化我们的日常生活、保护环境、扩大全球教育机会并降低能源消耗,对更小、更轻和更高效的电子设备的需求不断增加。然而,这些器件的过热问题一直是阻碍现有技术满足该领域关键应用要求的关键问题,也阻碍了未来电子器件进行必要的技术改进,以充分满足小尺寸、高功率和高可靠性的规格。用于个人应用。十多年来,可用于促进设备冷却的材料范围基本没有变化,其性能改进落后于电子应用的进步。该团队开发了一种新材料,可以非常有效地管理热量,从而使电子设备能够更快、更准确、更可靠地运行。涉及高功率处理器、高强度 LED、汽车电子、电信基础设施和半导体芯片封装的电子行业可以从我们的新技术中受益匪浅。此外,电池在汽车和家庭电源领域的使用呈指数级增长。过热仍然是影响此类电池安全和限制性能的关键问题。风能和太阳能等替代发电技术也依赖于强大的电力存储解决方案?所有这些都将通过使用下一代热管理技术得到增强。该团队致力于将一种新型热界面材料(TIM)商业化,该材料将有助于冷却下一代微处理器、电路和电子设备。当前一代 TIM 的热性能在电导率值约为 80 W/(m.K) 时达到峰值。所提出的新材料具有远大于 250 W/(m.K) 的超高导热率。该项目涉及使用软配体功能化的陶瓷纳米片,然后将其电沉积在金属基质中,形成柔软且柔顺的金属,并保持其高导电性。因此,所提出的技术提供了一种混合纳米复合材料,它是金属、陶瓷和有机微观结构的组合。该团队预计,随着对提高能源效率和热管理的需求不断增加,所提议的技术可能会对降低用于冷却目的的能源产生广泛的积极影响以及其他好处。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mustafa Akbulut其他文献

Clinical Outcomes and Quality of Life Following TEVAR with or without Revascularization of the Left Subclavian Artery
有或没有左锁骨下动脉血运重建的 TEVAR 后的临床结果和生活质量
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mehmet Şengör;Mustafa Akbulut;S. Taş;M. Şişmanoğlu
  • 通讯作者:
    M. Şişmanoğlu
Investigation on strength loss in buckling of composite columns subjected to fatigue loading
疲劳荷载作用下组合柱屈曲强度损失研究
Early period results for repair of complex thoracic aortic diseases with E-vita open stent graft
E-vita 开放式覆膜支架修复复杂胸主动脉疾病的早期结果
  • DOI:
    10.15511/ejcm.17.00101
  • 发表时间:
    2017-03-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Adnan Ak;A. Tuncer;A. A. Dönmez;Davut Çekmecelioğlu;M. Şişmanoğlu;Mustafa Akbulut;Özgür Arslan;S. Taş
  • 通讯作者:
    S. Taş
Chemically linked metal-matrix nanocomposites of boron nitride nanosheets and silver as thermal interface materials
氮化硼纳米片和银的化学连接金属基纳米复合材料作为热界面材料
  • DOI:
    10.1088/1361-6528/aaa668
  • 发表时间:
    2018-01-31
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Nirup Nagab;i;i;C. Yegin;Xuhui Feng;C. King;Jun Kyun Oh;Ethan M A Scholar;S. Narumanchi;Mustafa Akbulut
  • 通讯作者:
    Mustafa Akbulut
Horseradish Peroxidase Immobilized onto Mesoporous Magnetic Hybrid Nanoflowers for Enzymatic Decolorization of Textile Dyes: A Highly Robust Bioreactor and Boosted Enzyme Stability
固定在介孔磁性杂化纳米花上的辣根过氧化物酶用于纺织染料的酶促脱色:高度稳健的生物反应器和增强的酶稳定性
  • DOI:
    10.1021/acsomega.4c00703
  • 发表时间:
    2024-05-29
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Büşra Bakar;Mustafa Akbulut;Fatma Ulusal;Ahmet Ulu;N. Özdemir;B. Ateş
  • 通讯作者:
    B. Ateş

Mustafa Akbulut的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mustafa Akbulut', 18)}}的其他基金

Biomechanical Investigation of Insect Leg Joints
昆虫腿部关节的生物力学研究
  • 批准号:
    1434421
  • 财政年份:
    2014
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Transport of Nanomedicine in the Environment
纳米药物在环境中的运输
  • 批准号:
    1236532
  • 财政年份:
    2012
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似国自然基金

基于T形扫描热探针技术的微观运动界面非平衡能量传递过程研究
  • 批准号:
    52376159
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
石墨烯/低对称材料异质结各向异性界面热输运的机理及调控研究
  • 批准号:
    62304198
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
循环热-湿-力耦合环境下含CNT防除冰复合材料的界面性能研究
  • 批准号:
    52302457
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于纳米材料填充界面的热塑性复材的低速冲击损伤演化原位监测和热修复
  • 批准号:
    12362016
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
界面限域光/磁热转换非对称结构PPS纤维膜的构筑及膜蒸馏传质传热机理研究
  • 批准号:
    52303060
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
  • 批准号:
    2400352
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
  • 批准号:
    2400353
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Development of High Mobility and High Reliability SiC MOSFETs by Fluorine-Enhanced Thermal Oxidation
通过氟增强热氧化开发高迁移率和高可靠性 SiC MOSFET
  • 批准号:
    23K03974
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SBIR Phase II: Ultrasoft Thermal Interface Elastomer for Microelectronics
SBIR 第二阶段:微电子用超软热界面弹性体
  • 批准号:
    2233069
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Cooperative Agreement
Monitoring thermal conductance of solid-liquid interface in engineering fluids
监测工程流体中固液界面的热导率
  • 批准号:
    2849956
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了