Operator Theory and Applications
算子理论与应用
基本信息
- 批准号:1565243
- 负责人:
- 金额:$ 62.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Heisenberg uncertainty principle asserts that the order in which measurements are made matters; measuring the position of a particle before or after measuring its momentum affects the result. John von Neumann realized that the best way to capture this feature in a mathematical formulation was in terms of mathematical objects called operators. Studying operator theory is still fundamental not only in quantum mechanics, but in many areas of both pure and applied mathematics. Control theory, which is the design of things like automatic pilots and self-driving cars, depends critically on operator theory, and as these systems get more complex, new mathematical questions arise. The principal investigator will work on answering such questions.This project will study problems in operator theory, in function theory, and in the theory of noncommutative functions. Noncommutative functions are functions whose input consists of two (or more) matrices and whose output is a matrix. Roughly speaking they are generalized noncommutative polynomials in the same way that an analytic function is a generalized commutative polynomial. The theory of noncommutative functions is very new, but it has been successfully applied in diverse areas, including control theory, realization formulas, noncommutative algebraic geometry, and semi-definite programming. The principal investigator will use noncommutative function theory to study spectral theory, and operator monotonicity of functions, shedding light on the commutative theory also. In addition, he will work on using mathematical models to help understand the development of Alzheimer's disease.
海森伯格不确定性原则断言,测量的顺序是重要的。测量粒子在测量其动量之前或之后的位置会影响结果。约翰·冯·诺伊曼(John von Neumann)意识到,在数学公式中捕获此功能的最佳方法是在称为算子的数学对象方面。研究操作者理论不仅在量子力学中仍然是基本的,而且在纯数学和应用数学的许多领域中。控制理论是自动飞行员和自动驾驶汽车等事物的设计,这取决于操作者的理论,随着这些系统变得更加复杂,新的数学问题就会出现。首席研究者将致力于回答此类问题。该项目将研究操作者理论,功能理论和非交流功能理论中的问题。 非共同函数是函数,其输入由两个(或更多)矩阵组成,其输出为矩阵。大概的话,它们是普遍的非交换多项式,就像分析函数是广义的交换多项式一样。非共同功能的理论非常新,但是它已成功地应用于不同领域,包括控制理论,实现公式,非交通性代数几何形状和半明确编程。首席研究者将使用非交通函数理论来研究光谱理论和功能的运算符单调性,从而阐明了交换理论。此外,他将努力使用数学模型来帮助了解阿尔茨海默氏病的发展。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The implicit function theorem and free algebraic sets
隐函数定理和自由代数集
- DOI:10.1090/tran/6546
- 发表时间:2016
- 期刊:
- 影响因子:1.3
- 作者:Agler, Jim
- 通讯作者:Agler, Jim
共 1 条
- 1
John McCarthy其他文献
Agency, Power and Confrontation: the Role for Socially Engaged Art in CSCW with Rurban Communities in Support of Inclusion
代理、权力与对抗:社会参与艺术在 CSCW 与农村社区支持包容性中的作用
- DOI:
- 发表时间:20232023
- 期刊:
- 影响因子:0
- 作者:Maria Murray;Nadia Pantidi;John McCarthyMaria Murray;Nadia Pantidi;John McCarthy
- 通讯作者:John McCarthyJohn McCarthy
132. Genetic differences exist in the rate of maturity among grazing dairy cows
- DOI:10.1016/j.anscip.2021.03.13310.1016/j.anscip.2021.03.133
- 发表时间:2021-04-012021-04-01
- 期刊:
- 影响因子:
- 作者:Maeve Williams;Roy D. Sleator;Craig P. Murphy;John McCarthy;Donagh P. BerryMaeve Williams;Roy D. Sleator;Craig P. Murphy;John McCarthy;Donagh P. Berry
- 通讯作者:Donagh P. BerryDonagh P. Berry
Ascribing Mental Qualities to Machines
将心理品质归因于机器
- DOI:
- 发表时间:19791979
- 期刊:
- 影响因子:0
- 作者:John McCarthyJohn McCarthy
- 通讯作者:John McCarthyJohn McCarthy
Recursive Functions of Symbolic Expressions and their Computation by Machine
- DOI:
- 发表时间:1959-031959-03
- 期刊:
- 影响因子:0
- 作者:John McCarthyJohn McCarthy
- 通讯作者:John McCarthyJohn McCarthy
Review: Roger Penrose, The emperor's new mind
评论:罗杰·彭罗斯,皇帝的新思想
- DOI:10.1090/s0273-0979-1990-16000-810.1090/s0273-0979-1990-16000-8
- 发表时间:19901990
- 期刊:
- 影响因子:0
- 作者:John McCarthyJohn McCarthy
- 通讯作者:John McCarthyJohn McCarthy
共 21 条
- 1
- 2
- 3
- 4
- 5
John McCarthy的其他基金
Combinatorial Biosynthetic Pathway Engineering
组合生物合成途径工程
- 批准号:EP/X039587/1EP/X039587/1
- 财政年份:2024
- 资助金额:$ 62.5万$ 62.5万
- 项目类别:Research GrantResearch Grant
Operator Analysis and Applications
算子分析及应用
- 批准号:20541992054199
- 财政年份:2021
- 资助金额:$ 62.5万$ 62.5万
- 项目类别:Standard GrantStandard Grant
Conference on Multivariable Operator Theory and Function Spaces in Several Variables
多变量算子理论与多变量函数空间会议
- 批准号:20550132055013
- 财政年份:2021
- 资助金额:$ 62.5万$ 62.5万
- 项目类别:Standard GrantStandard Grant
A Database and Analysis of Intergroup Hostility
群体间敌意的数据库和分析
- 批准号:17563691756369
- 财政年份:2018
- 资助金额:$ 62.5万$ 62.5万
- 项目类别:Standard GrantStandard Grant
I-Corps: Patient Leg-Powered Wheelchair Mobility to Promote Wellness
I-Corps:患者腿部动力轮椅移动以促进健康
- 批准号:17434771743477
- 财政年份:2017
- 资助金额:$ 62.5万$ 62.5万
- 项目类别:Standard GrantStandard Grant
Trypanosomatid protein synthesis as a target for novel drug therapies
锥虫蛋白合成作为新型药物治疗的靶点
- 批准号:MR/N017447/1MR/N017447/1
- 财政年份:2016
- 资助金额:$ 62.5万$ 62.5万
- 项目类别:Research GrantResearch Grant
Computer-Aided Invention of Complex Articulated Systems with Operational Constraints
具有操作约束的复杂铰接系统的计算机辅助发明
- 批准号:16360171636017
- 财政年份:2016
- 资助金额:$ 62.5万$ 62.5万
- 项目类别:Standard GrantStandard Grant
Changes-of mind in target selection for action
行动目标选择的想法改变
- 批准号:15142461514246
- 财政年份:2015
- 资助金额:$ 62.5万$ 62.5万
- 项目类别:Standard GrantStandard Grant
Transatlantic SynBio Workshop
跨大西洋合成生物研讨会
- 批准号:BB/L027062/1BB/L027062/1
- 财政年份:2014
- 资助金额:$ 62.5万$ 62.5万
- 项目类别:Research GrantResearch Grant
Warwick Integrative Synthetic Biology Centre
沃里克综合合成生物学中心
- 批准号:BB/M017982/1BB/M017982/1
- 财政年份:2014
- 资助金额:$ 62.5万$ 62.5万
- 项目类别:Research GrantResearch Grant
相似国自然基金
基于热电力协同调控的食管穿越式适形热物理治疗理论与方法研究
- 批准号:52306105
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
代数K理论、代数数论及其在编码密码中的应用
- 批准号:12371035
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
面向六自由度交互的沉浸式视频感知编码理论与方法研究
- 批准号:62371081
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
一类双色散非局部波动方程初值问题的理论研究
- 批准号:12301272
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
物理-数据混合驱动的复杂曲面多模态视觉检测理论与方法
- 批准号:52375516
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Theory and Applications of Structure-Conforming Deep Operator Learning
合作研究:结构符合深度算子学习的理论与应用
- 批准号:23097782309778
- 财政年份:2023
- 资助金额:$ 62.5万$ 62.5万
- 项目类别:Standard GrantStandard Grant
Quantitative Operator K-theory and Applications
定量算子K理论及应用
- 批准号:22473132247313
- 财政年份:2023
- 资助金额:$ 62.5万$ 62.5万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: Theory and Applications of Structure-Conforming Deep Operator Learning
合作研究:结构符合深度算子学习的理论与应用
- 批准号:23097772309777
- 财政年份:2023
- 资助金额:$ 62.5万$ 62.5万
- 项目类别:Standard GrantStandard Grant
Theory and applications of operator systems and operator algebras
算子系统和算子代数的理论与应用
- 批准号:RGPIN-2019-03923RGPIN-2019-03923
- 财政年份:2022
- 资助金额:$ 62.5万$ 62.5万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Theory and applications of operator systems and operator algebras
算子系统和算子代数的理论与应用
- 批准号:RGPIN-2019-03923RGPIN-2019-03923
- 财政年份:2021
- 资助金额:$ 62.5万$ 62.5万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual