ABI Innovation: Collaborative Research: Computational framework for inference of metabolic pathway activity from RNA-seq data

ABI Innovation:协作研究:从 RNA-seq 数据推断代谢途径活性的计算框架

基本信息

  • 批准号:
    1564936
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

Microbial communities, or microbiomes, are an essential part of life on Earth. Microbiomes in the natural environment, including those associated with animals and plants, have thousands of interacting microbial species. Microbial communities influence key aspects of host health and behavior. They drive basic biochemical processes in their hosts, such as nutrient processing in the guts and sequestration of carbon in the Earth's oceans. The study of microbiomes has been recently revolutionized by the use of advanced sequencing technologies. However, large-scale sequencing initiatives, such as the Human Microbiome Project and the Earth Microbiome Project, are generating Petabytes (10 to the power of 15 bytes) of data, more than existing analysis tools can handle. The goal of this project is to develop transformative computational methods and implement software tools that enable the analysis of these very large datasets. Specifically, these tools will provide improved methods to organize community gene expression data (metatranscriptomes) into metabolic pathways, which informs predictions of how biochemical processes transform matter and energy. To maximize its impact, the developed software tools will be made available to the research community as stand-alone open source packages and deployed on common cloud computing environments. The project will provide opportunities for mentoring undergraduate and graduate students at Georgia State University, University of Connecticut, and Georgia Tech and promote the participation of women and underrepresented groups in bioinformatics research and empirical analysis of community-level sequence (DNA/RNA) datasets. Selected aspects of the proposed research will be incorporated in courses at the three universities, and form the basis of innovative curriculum and educational materials, including the creation of mobile applications. This project brings together an interdisciplinary team of computer scientists and environmental microbiologists to develop and implement computational tools that enable de novo analysis of large multi-sample microbiome sequencing datasets, addressing current challenges in metatranscriptome assembly and inference of metabolic pathway activity. Specific aims of the project include: (i) developing highly scalable algorithms for de novo assembly and quantification from multiple metatranscriptomic samples, (ii) developing highly accurate algorithms for estimation of metabolic pathway activity level and differential activity testing, (iii) developing and validating prototype implementations of developed methods. A distinguishing feature of the developed methods will be their ability to jointly analyze multiple related metatranscriptomic samples. This joint assembly and quantification paradigm is likely to find applications beyond microbiome research, e.g., in the emerging area of single cell genomics. The results of the project, including software packages, research publications, and educational materials, will be made available at http://alan.cs.gsu.edu/NGS/?q=software and http://dna.engr.uconn.edu/?page_id=719
微生物群落或微生物组是地球生命的重要组成部分。自然环境中的微生物组,包括与动物和植物相关的微生物,具有数千种相互作用的微生物物种。微生物群落影响宿主健康和行为的关键方面。它们在其宿主中驱动基本的生化过程,例如肠道中的营养加工和地球海洋中碳的隔离。最近,通过使用先进的测序技术来彻底改变了微生物组的研究。但是,大规模测序计划,例如人类微生物组项目和地球微生物组项目,正在生成数据的PB(10到15个字节的功率),比现有分析工具可以处理的更多。该项目的目的是开发变革性计算方法并实施能够分析这些非常大数据集的软件工具。具体而言,这些工具将提供改进的方法,以将社区基因表达数据(元文字)组织到代谢途径中,从而为生化过程如何改变物质和能量的预测提供了预测。为了最大程度地发挥其影响,开发的软件工具将作为独立的开源软件包提供给研究社区,并在常见的云计算环境中部署。该项目将为佐治亚州立大学,康涅狄格大学和佐治亚理工学院的本科生和研究生提供机会,并促进妇女和代表性不足的群体参与生物信息学研究和社区水平序列(DNA/RNA)数据集的经验分析。拟议研究的选定方面将纳入三所大学的课程中,并构成创新课程和教育材料的基础,包括创建移动应用程序。该项目汇集了一个计算机科学家和环境微生物学家组成的跨学科团队,以开发和实施计算工具,从而使大型多样本微生物组测序数据集对从头分析,从而解决了元文字组件组装中当前挑战和代谢途径活动的推理。该项目的具体目的包括:(i)开发从头组装的高度可扩展算法和来自多个元文字样品的定量,(ii)(ii)开发高准确的算法,用于估计代谢途径活动水平和差异活动水平的估计,(iii)开发和验证开发方法的原型实施原型。所开发方法的一个显着特征将是它们共同分析多个相关的元文字样品的能力。该联合组装和定量范式可能会在微生物组研究(例如在单细胞基因组学的新兴领域)中找到应用。该项目的结果,包括软件包,研究出版物和教育材料,将在http://alan.cs.gsu.edu.edu/ngs/?q=software和http://dna.engr.uconn.edu/?page_id = 719上提供。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ion Mandoiu其他文献

Ion Mandoiu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ion Mandoiu', 18)}}的其他基金

Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2212511
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CCF-BSF: AF: Small: Collaborative Research: Algorithmic Techniques for Inferring Transmission Networks from Noisy Sequencing Data
CCF-BSF:AF:小型:协作研究:从噪声排序数据推断传输网络的算法技术
  • 批准号:
    1618347
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: Reconstruction of Haplotype Spectra from High-Throughput Sequencing Data
III:小:合作研究:从高通量测序数据重建单倍型谱
  • 批准号:
    0916948
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Bioinformatics Tools Enabling Large-Scale DNA Barcoding
生物信息学工具实现大规模 DNA 条形码
  • 批准号:
    0543365
  • 财政年份:
    2006
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Combinatorial Algorithms for High-Throughput Collection and Analysis of Genomic Diversity Data
职业:基因组多样性数据高通量收集和分析的组合算法
  • 批准号:
    0546457
  • 财政年份:
    2006
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

探索时间领导对团队创新的双刃剑效应:基于创新二元性理论框架
  • 批准号:
    72302204
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
    72274225
  • 批准年份:
    2022
  • 资助金额:
    45.00 万元
  • 项目类别:
    面上项目
面向协作机器人的双向驱动关节创新设计与柔顺控制方法研究
  • 批准号:
    92048201
  • 批准年份:
    2020
  • 资助金额:
    240 万元
  • 项目类别:
    重大研究计划
大学生在线协作式知识创新研究:实时学习分析工具的开发及应用
  • 批准号:
    61907038
  • 批准年份:
    2019
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: ABI Innovation: FuTRES, an Ontology-Based Functional Trait Resource for Paleo- and Neo-biologists
合作研究:ABI 创新:FuTRES,为古生物学家和新生物学家提供的基于本体的功能性状资源
  • 批准号:
    2201182
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Towards Computational Exploration of Large-Scale Neuro-Morphological Datasets
合作研究:ABI 创新:大规模神经形态数据集的计算探索
  • 批准号:
    2028361
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Enabling machine-actionable semantics for comparative analyses of trait evolution
合作研究:ABI 创新:启用机器可操作的语义以进行特征进化的比较分析
  • 批准号:
    2048296
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Biofilm Resource and Information Database (BRaID): A Tool to Fuse Diverse Biofilm Data Types
合作研究:ABI 创新:生物膜资源和信息数据库 (BRaID):融合多种生物膜数据类型的工具
  • 批准号:
    2027203
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Quantifying biogeographic history: a novel model-based approach to integrating data from genes, fossils, specimens, and environments
合作研究:ABI 创新:量化生物地理历史:一种基于模型的新颖方法来整合来自基因、化石、标本和环境的数据
  • 批准号:
    1759729
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了