AF: Medium: Collaborative Research: The Power of Randomness for Approximate Counting

AF:中:协作研究:近似计数的随机性的力量

基本信息

  • 批准号:
    1563838
  • 负责人:
  • 金额:
    $ 80万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

The study of the complexity of counting problems has a long and rich history in theoretical computer science. Counting problems (and closely related sampling problems) arise naturally in many different fields, for example in statistical physics they correspond to partition functions and for studies of the equilibrium states of idealized models of physical systems, and in Bayesian inference they arise for the study of posterior distributions or maximum likelihood distributions. The specific questions addressed here are long-standing open problems, progress on which will be of wide interest. The project will develop new tools for approximate counting and is likely to make new and useful connections between statistical physics, probability and computational complexity. The research results will be disseminated via course notes, a summer school and workshops. Any practical algorithms that result will be made publicly available.The overall goal of the project is to extend the known boundary of polynomial-time tractability for counting problems, to understand whether randomness is essential and how it could be eliminated, and to push the limits of the current fastest randomized algorithms towards practicality. Specific aims include: (1) Polynomial-time randomized approximation schemes for some fundamental problems that have thus far eluded efficient solutions, (2) Deterministic polynomial-time approximation schemes for some central problems that have celebrated randomized algorithms and (3) Faster randomized algorithms for classical counting problems.
对计数问题的复杂性的研究在理论计算机科学中具有悠久而丰富的历史。计数问题(以及密切相关的抽样问题)自然出现在许多不同的领域中,例如,在统计物理学中,它们对应于分区函数,并研究理想化物理系统的理想化模型的平衡状态,而在贝叶斯的推论中,它们用于研究后验分布或最大可能性分布。这里解决的具体问题是长期的开放问题,即将取得广泛关注的进展。该项目将开发用于近似计数的新工具,并可能在统计物理,概率和计算复杂性之间建立新的和有用的连接。研究结果将通过课程笔记,暑期学校和研讨会来传播。结果将公开可用的任何实用算法。该项目的总体目标是扩展多项式时间障碍的已知边界来计算问题,以了解是否必不可少以及如何消除随机性,并将当前最快的随机算法的限制推向实用性。具体目的包括:(1)针对某些基本问题的多项式时间随机近似方案,这些问题迄今已避免了有效的解决方案,(2)确定性多项式时间近似方案,用于某些庆祝随机算法的中心问题,并且(3)对经典计数问题更快的随机算法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Santosh Vempala其他文献

Nearest Neighbors
  • DOI:
    10.1007/978-3-319-17885-1_100845
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Santosh Vempala
  • 通讯作者:
    Santosh Vempala
The Mirror Langevin Algorithm Converges with Vanishing Bias
镜像 Langevin 算法收敛并消除偏差
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ruilin Li;Molei Tao;Santosh Vempala;Andre Wibisono
  • 通讯作者:
    Andre Wibisono

Santosh Vempala的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Santosh Vempala', 18)}}的其他基金

Travel: NSF Student Travel Grant for 2023 PROTRAC:Probabilistic Trajectories in Algorithms and Combinatorics
旅行:2023 年 NSF 学生旅行补助金 PROTRAC:算法和组合学中的概率轨迹
  • 批准号:
    2340325
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: Foundations of Deep Learning: Theory, Robustness, and the Brain​
协作研究:深度学习的基础:理论、稳健性和大脑 —
  • 批准号:
    2134105
  • 财政年份:
    2021
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Fundamental Challenges in Optimization
合作研究:AF:中:优化中的基本挑战
  • 批准号:
    2106444
  • 财政年份:
    2021
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
AF: Small: Fundamental High-Dimensional Algorithms
AF:小:基本的高维算法
  • 批准号:
    2007443
  • 财政年份:
    2020
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: A Computational Theory of Brain Function
AF:小:协作研究:脑功能的计算理论
  • 批准号:
    1909756
  • 财政年份:
    2019
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
TRIPODS+X: RES: Collaborative Research: Scaling Up Descriptive Epidemiology and Metabolic Network Models via Faster Sampling
TRIPODS X:RES:协作研究:通过更快的采样扩大描述性流行病学和代谢网络模型
  • 批准号:
    1839323
  • 财政年份:
    2018
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
AF:Small: Fundamental High-Dimensional Algorithms
AF:Small:基本的高维算法
  • 批准号:
    1717349
  • 财政年份:
    2017
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
AF: EAGER: Fundamental High-Dimensional Algorithms
AF:EAGER:基本高维算法
  • 批准号:
    1555447
  • 财政年份:
    2015
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
EAGER: Convex Optimization Algorithms for 21st Century Challenges
EAGER:应对 21 世纪挑战的凸优化算法
  • 批准号:
    1415498
  • 财政年份:
    2014
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
AF: Small: Fundamental High-Dimensional Algorithms based on Convex Geometry and Spectral Methods
AF:小:基于凸几何和谱方法的基本高维算法
  • 批准号:
    1217793
  • 财政年份:
    2012
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant

相似国自然基金

复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于管理市场和干预分工视角的消失中等企业:特征事实、内在机制和优化路径
  • 批准号:
    72374217
  • 批准年份:
    2023
  • 资助金额:
    41.00 万元
  • 项目类别:
    面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
  • 批准号:
    12371432
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
  • 批准号:
    12365008
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
  • 批准号:
    2422926
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402283
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402852
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了