AF: EAGER: Approximation algorithms for the traveling salesman problem

AF:EAGER:旅行商问题的近似算法

基本信息

  • 批准号:
    1552831
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

The traveling salesman problem is a famous, well-studied problem within computer science and optimization. Given n cities, and a set of distances between each pair of cities, the goal is to find the shortest tour that visits each city once and returns to its starting point. There is an outstanding question of whether there is any efficient algorithm that given any set of n cities and the distances can find the shortest tour, or whether any such algorithm will always need time exponential in n to find the shortest tour. In the absence of the resolution of this question, researchers in computer science have instead looked for efficient algorithms that always find provably near-optimal solutions to the problem. The best such algorithm for the traveling salesman problem, known for almost 40 years now, is one that finds a tour that is always no more than 50% longer than the shortest possible tour. The goal of this project is to find efficient algorithms that always find tours significantly closer to the optimal than 50% longer. Recently some candidate algorithms have been proposed which might be provably better than the 40-year-old algorithm; they give provably better bounds in special cases of the traveling salesman problem, and the PI has shown through computational experiments that in practice they perform better. The goal of this project is to attempt to prove that these candidate algorithms do in fact perform better (or to show that they do not). The project will use computational experiments in significant ways to help direct the mathematical proofs of the behavior of these algorithms. Because the traveling salesman problem is well-known to undergraduates and even high school students interested in computer science, the PI hopes to involve undergraduates in parts of the research and expose high school students to the work in order to interest them in further study in computer science.
旅行商问题是计算机科学和优化领域一个著名的、经过深入研究的问题。 给定 n 个城市以及每对城市之间的一组距离,目标是找到访问每个城市一次并返回起点的最短旅行。 一个悬而未决的问题是,是否存在任何有效的算法,可以在给定任意 n 个城市和距离的情况下找到最短旅行,或者是否任何此类算法总是需要 n 的时间指数才能找到最短旅行。 在这个问题没有得到解决的情况下,计算机科学的研究人员转而寻找有效的算法,这些算法总是能找到可证明的接近最佳的问题解决方案。 解决旅行推销员问题的最佳算法已为人所知近 40 年,它可以找到一条始终比最短可能旅行长不超过 50% 的旅行。该项目的目标是找到有效的算法,总能找到更接近最优路径的路径,而不是延长 50% 的时间。 最近提出了一些候选算法,它们可能比 40 年前的算法更好;它们在旅行商问题的特殊情况下给出了更好的界限,并且 PI 通过计算实验表明它们在实践中表现更好。 该项目的目标是尝试证明这些候选算法实际上确实表现更好(或证明它们没有)。 该项目将以重要的方式使用计算实验来帮助指导这些算法行为的数学证明。由于旅行商问题对于本科生甚至对计算机科学感兴趣的高中生来说都是众所周知的,PI希望让本科生参与部分研究,并让高中生接触到这项工作,以激发他们进一步学习计算机的兴趣科学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Williamson其他文献

Factor V Cambridge: a new mutation (Arg306-->Thr) associated with resistance to activated protein C.
剑桥因子 V:与活化蛋白 C 抗性相关的新突变 (Arg306-->Thr)。
  • DOI:
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    20.3
  • 作者:
    David Williamson;K. Brown;R. Luddington;C. Baglin;Trevor Baglin
  • 通讯作者:
    Trevor Baglin
Association Between Pupil Light Reflex and Delirium in Adults With Traumatic Brain Injury: Preliminary Findings.
成人创伤性脑损伤的瞳孔光反射与谵妄之间的关联:初步发现。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Alexandra Lapierre;Annie Proulx;Céline Gélinas;Stéphanie Dollé;Sheila Alexander;David Williamson;Francis Bernard;C. Arbour
  • 通讯作者:
    C. Arbour
Model Re-Estimation: An Alternative for Poor Predictive Performance during External Evaluations? Example of Gentamicin in Critically Ill Patients
模型重新估计:外部评估期间预测性能不佳的替代方案?
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Alexandre Duong;C. Simard;David Williamson;A. Marsot
  • 通讯作者:
    A. Marsot
The PROMISING Project: A Pilot Study to Improve Geriatric Care Through a Pharmacist-Led Psychotropic Stewardship Program
有前途的项目:通过药剂师主导的精神药物管理计划改善老年护理的试点研究
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Marie d'Amours;Farah Ettis;Lauriane Ginefri;Johnny Lim;Angela;Jennifer Fontaine;Dana Wazzan;David Williamson;Vincent Dagenais
  • 通讯作者:
    Vincent Dagenais
Effects of OROS Methylphenidate on Academic, Behavioral, and Cognitive Tasks in Children 9 to 12 Years of Age With Attention-Deficit/Hyperactivity Disorder
OROS 哌醋甲酯对 9 至 12 岁注意力缺陷/多动症儿童学业、行为和认知任务的影响
  • DOI:
    10.1177/0009922810394832
  • 发表时间:
    2011-04-01
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    D. Murray;A. Childress;J. Giblin;David Williamson;Robert B. Armstrong;H. Starr
  • 通讯作者:
    H. Starr

David Williamson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Williamson', 18)}}的其他基金

AF: SMALL: Topics in Bridging Continuous and Discrete Optimization
AF:SMALL:桥接连续优化和离散优化的主题
  • 批准号:
    2007009
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
AF: Small: Looking Under Rocks: A Search for a Provably Stronger TSP Relaxation
AF:小:寻找岩石下:寻找可证明更强的 TSP 弛豫
  • 批准号:
    1908517
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
AF: Small: The Traveling Salesman Problem and Lightweight Approximation Algorithms
AF:小:旅行商问题和轻量级近似算法
  • 批准号:
    1115256
  • 财政年份:
    2011
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Contemporary Issues in Network Design
网络设计的当代问题
  • 批准号:
    0830519
  • 财政年份:
    2008
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Resolving Anomalies in Approximation Algorithms
解决近似算法中的异常
  • 批准号:
    0514628
  • 财政年份:
    2005
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Mathematical Sciences:Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    9305954
  • 财政年份:
    1993
  • 资助金额:
    $ 10万
  • 项目类别:
    Fellowship Award
Interdisciplinary Research on a Watershed- Estuarine System Of the Chesapeake Bay
切萨皮克湾流域-河口系统的跨学科研究
  • 批准号:
    7203361
  • 财政年份:
    1971
  • 资助金额:
    $ 10万
  • 项目类别:
    Interagency Agreement

相似国自然基金

渴望及其对农村居民收入差距的影响研究
  • 批准号:
    71903117
  • 批准年份:
    2019
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
威胁应对视角下的消费者触摸渴望及其补偿机制研究
  • 批准号:
    71502075
  • 批准年份:
    2015
  • 资助金额:
    17.5 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
EAGER: Proof-Carrying Code Completions
EAGER:携带证明的代码完成
  • 批准号:
    2403762
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了