AF: Small: The Traveling Salesman Problem and Lightweight Approximation Algorithms

AF:小:旅行商问题和轻量级近似算法

基本信息

  • 批准号:
    1115256
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

The traveling salesman problem (TSP) is easily the most famous problem in discrete optimization. Given a set of n cities and the costs c(i,j) of traveling from city i to city j for all i and j, the goal of the problem is to find the least expensive tour that visits each city exactly once and returns to its starting point. A linear programming relaxation of the problem called the subtour LP is known to give extremely good lower bounds on the length of an optimal tour in practice. Nevertheless, the subtour LP bound is poorly understood from a theoretical point of view. For 30 years it has been known that it is always at least 2/3 times the length of an optimal tour, and it is known that there are instances such that it is at most 3/4 times the length of an optimal tour, but no progress has been made in tightening these bounds. It has been conjectured that the subtour LP is always at least 3/4 times the length of the optimal tour. The goal of this research is to resolve this conjecture. Because this goal is very ambitious, a number of intermediate goals have been proposed. Theoretical computer scientists have intensively studied approximation algorithms for NP-hard problems; these are polynomial-time algorithms that always provide solutions that are provably close to optimal (in terms of some performance guarantee). The main issue driving theoretical work has been improvements in performance guarantee rather than whether the algorithms are implementable or practical. While understanding the limits of approximability is and should be one of the issues that theoretical work advances, one can also explore whether those limits can be reached with algorithms that are less computationally intensive than the ones currently in the literature. We call this the creation of lightweight versions of approximation algorithms. This exploration advances the potential impact of approximation algorithm on practice without losing the theoretical rigor of the field.The intellectual merit of the proposal lies in the possibility of making substantial progress in resolving outstanding problems related to the subtour LP for the traveling salesman problem, and also in making practical some of the outstanding theoretical work in approximation algorithms. The goal of this research lies in moving theoretical and practical studies of optimization problems closer to each other. In the case of the traveling salesman problem, we have a bound that is very good in practice, but we do not understand its theoretical properties. In the case of approximation algorithms, we have some very good theoretical algorithms, but they are often not practical. We would like to understand the theoretical properties of the subtour LP bound for the traveling salesman problem, and to make practical some of the good theoretical work in approximation algorithms.
旅行商问题(TSP)无疑是离散优化中最著名的问题。 给定一组 n 个城市以及所有 i 和 j 从城市 i 到城市 j 的旅行成本 c(i,j),问题的目标是找到最便宜的旅行,该旅行恰好访问每个城市一次并返回它的起点。众所周知,称为子巡回 LP 的问题的线性规划松弛可以在实践中给出最佳巡回长度的极好的下界。 然而,从理论角度来看,人们对次行程 LP 界限知之甚少。 30 年来,人们都知道它总是至少是最佳旅行长度的 2/3 倍,并且已知存在最多是最佳旅行长度的 3/4 倍的情况,但是在收紧这些界限方面尚未取得任何进展。据推测,子行程 LP 总是至少是最佳行程长度的 3/4 倍。本研究的目的就是要解决这个猜想。 由于这个目标非常雄心勃勃,因此提出了一些中期目标。理论计算机科学家深入研究了 NP 难题的近似算法;这些是多项式时间算法,总是提供可证明接近最优的解决方案(在某些性能保证方面)。 推动理论工作的主要问题是性能保证的改进,而不是算法是否可实现或实用。 虽然理解近似性的限制是而且应该是理论工作进展的问题之一,但人们还可以探索是否可以使用比当前文献中计算强度较小的算法来达到这些限制。 我们称之为近似算法的轻量级版本的创建。这一探索在不失去该领域理论严谨性的情况下,提出了近似算法对实践的潜在影响。该提案的智力价值在于有可能在解决与旅行商问题的子旅行 LP 相关的突出问题方面取得实质性进展,并且还致力于将近似算法中的一些杰出理论工作付诸实践。这项研究的目标在于使优化问题的理论和实践研究更加接近。 就旅行商问题而言,我们有一个在实践中非常好的界限,但我们不了解它的理论属性。 就近似算法而言,我们有一些非常好的理论算法,但它们往往不实用。 我们希望了解旅行商问题的子游 LP 边界的理论属性,并将近似算法中的一些优秀理论工作付诸实践。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Williamson其他文献

The PROMISING Project: A Pilot Study to Improve Geriatric Care Through a Pharmacist-Led Psychotropic Stewardship Program
有前途的项目:通过药剂师主导的精神药物管理计划改善老年护理的试点研究
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Marie d'Amours;Farah Ettis;Lauriane Ginefri;Johnny Lim;Angela;Jennifer Fontaine;Dana Wazzan;David Williamson;Vincent Dagenais
  • 通讯作者:
    Vincent Dagenais
Association Between Pupil Light Reflex and Delirium in Adults With Traumatic Brain Injury: Preliminary Findings.
成人创伤性脑损伤的瞳孔光反射与谵妄之间的关联:初步发现。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Alexandra Lapierre;Annie Proulx;Céline Gélinas;Stéphanie Dollé;Sheila Alexander;David Williamson;Francis Bernard;C. Arbour
  • 通讯作者:
    C. Arbour
Factor V Cambridge: a new mutation (Arg306-->Thr) associated with resistance to activated protein C.
剑桥因子 V:与活化蛋白 C 抗性相关的新突变 (Arg306-->Thr)。
  • DOI:
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    20.3
  • 作者:
    David Williamson;K. Brown;R. Luddington;C. Baglin;Trevor Baglin
  • 通讯作者:
    Trevor Baglin
Model Re-Estimation: An Alternative for Poor Predictive Performance during External Evaluations? Example of Gentamicin in Critically Ill Patients
模型重新估计:外部评估期间预测性能不佳的替代方案?
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Alexandre Duong;C. Simard;David Williamson;A. Marsot
  • 通讯作者:
    A. Marsot
Effects of OROS Methylphenidate on Academic, Behavioral, and Cognitive Tasks in Children 9 to 12 Years of Age With Attention-Deficit/Hyperactivity Disorder
OROS 哌醋甲酯对 9 至 12 岁注意力缺陷/多动症儿童学业、行为和认知任务的影响
  • DOI:
    10.1177/0009922810394832
  • 发表时间:
    2011-04-01
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    D. Murray;A. Childress;J. Giblin;David Williamson;Robert B. Armstrong;H. Starr
  • 通讯作者:
    H. Starr

David Williamson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Williamson', 18)}}的其他基金

AF: SMALL: Topics in Bridging Continuous and Discrete Optimization
AF:SMALL:桥接连续优化和离散优化的主题
  • 批准号:
    2007009
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
AF: Small: Looking Under Rocks: A Search for a Provably Stronger TSP Relaxation
AF:小:寻找岩石下:寻找可证明更强的 TSP 弛豫
  • 批准号:
    1908517
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
AF: EAGER: Approximation algorithms for the traveling salesman problem
AF:EAGER:旅行商问题的近似算法
  • 批准号:
    1552831
  • 财政年份:
    2015
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Contemporary Issues in Network Design
网络设计的当代问题
  • 批准号:
    0830519
  • 财政年份:
    2008
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Resolving Anomalies in Approximation Algorithms
解决近似算法中的异常
  • 批准号:
    0514628
  • 财政年份:
    2005
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Mathematical Sciences:Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    9305954
  • 财政年份:
    1993
  • 资助金额:
    $ 35万
  • 项目类别:
    Fellowship Award
Interdisciplinary Research on a Watershed- Estuarine System Of the Chesapeake Bay
切萨皮克湾流域-河口系统的跨学科研究
  • 批准号:
    7203361
  • 财政年份:
    1971
  • 资助金额:
    $ 35万
  • 项目类别:
    Interagency Agreement

相似国自然基金

ALKBH5介导的SOCS3-m6A去甲基化修饰在颅脑损伤后小胶质细胞炎性激活中的调控作用及机制研究
  • 批准号:
    82301557
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
miRNA前体小肽miPEP在葡萄低温胁迫抗性中的功能研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
PKM2苏木化修饰调节非小细胞肺癌起始细胞介导的耐药生态位的机制研究
  • 批准号:
    82372852
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于翻译组学理论探究LncRNA H19编码多肽PELRM促进小胶质细胞活化介导电针巨刺改善膝关节术后疼痛的机制研究
  • 批准号:
    82305399
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CLDN6高表达肿瘤细胞亚群在非小细胞肺癌ICB治疗抗性形成中的作用及机制研究
  • 批准号:
    82373364
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Geographical Imagination in English Novels--Migration and Geopolitics
英国小说中的地理想象--移民与地缘政治
  • 批准号:
    18K00371
  • 财政年份:
    2018
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
AF: Small: Rounding by Sampling Method and Applications to Traveling Salesman Problems
AF:小:抽样方法舍入及其在旅行商问题中的应用
  • 批准号:
    1216698
  • 财政年份:
    2012
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
STUDY ON TRAVELING MICROMECHANISM
行走微观机构的研究
  • 批准号:
    02402025
  • 财政年份:
    1990
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (A)
MAN IN HIS ENVIRONMENT - A SMALL TRAVELING EXHIBIT
人在他的环境中——一个小型巡回展览
  • 批准号:
    7469860
  • 财政年份:
    1974
  • 资助金额:
    $ 35万
  • 项目类别:
MAN IN HIS ENVIROMENT - A SMALL TRAVELING EXHIBIT
人在他的环境中——一个小型巡回展览
  • 批准号:
    7469861
  • 财政年份:
    1974
  • 资助金额:
    $ 35万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了